
I -1

4, XLECTF

AN 08 19

Approved for publc r~cra
Distribution UnBn~llr

DEPARTMENT OF THE AIR FORCE

AIRUNIVER SITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright- Patterson Air Force Base, Ohio

92 ~ 211.8

AFIT/GCS/ENG/91D-1O

An Animated Graphical Postprocessor
'for the Saber Wargame

THESIS

Gary Wayne Klabunde

Captain, USAF

AFIT/GCS/ENG/91D-10

Approved for public release; distribution unlimited

AFIT/GCS/ENG/91D- 10

An Animated Graphical Postprocessor

for the Saber Wargame

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

Gary Wayne Klabunde, B.A.

Captain, USAF

December, 1991

Approved for public release; distribution unlimited

Preface

This thesis documents the design and implementation of an animated, graphical

post-processor for the Saber wargame developed at the Air Force Institute of Technology.

The Ada based post-processor utilizes the X Window System to provide the game players

with the force status information necessary to plan and execute a theater-level air and land

war. The report processor produces reports that can be viewed on the screen or printed

in hardcopy form. The animation portion of the user interface allows the game players to

see how the day's battle unfolded. They can see how their mission orders were carried out

in addition to the enemy's response.

This effort was part of a team development. Other team members, developed the air

and land s' -iulation, system database, and input routines. The post-processor provides a

stable framework for future interface enhancements and modifications.

I exten,(my gratitude to several people, without whose help, this thesis could not

have been accomplished. 'Yirst, I would like to thank my thesis advisor, Major Mark A.

Roth. His experience, assistance, and guidance were of enormous help as I struggled with

the technical and theoretical issues. I also wish to thank my committee members, Majors

Michael Garrambone and Eric Christensen, for their hints, suggestions, and editing of the

draft manuscripts. This thesis could not have been accomplished without the assistance

of Captain Tim Halloran and others at the Air Force Wargaming Center. Their technical

assistance in the intricacies of X and the Motif widget set were greatly appreciated. I

especially want to thank my beautiful wife, Maria, who basically lived eighteen months

as a single parent. I cannot repay her for the patience, understanding and support she

provided during this research effort. Finally, I wish to thank my three year old son,

Christopher, for making me smile when I needed it most. Daddy's coming home to play.

Gary Vayne (iabiide

Table of Contents

Page

Preface......

Table of Contents.....

List of Figures. viii

List of Tables. x

Abstract xi

I. Introduction..... 1

1.1 Background....... 1

1.2 Problem....

1.3 Research Objectives. 4

1.4 Assumptions 5

1.5 Approach. 5

1.6 Standards 6

1.7 Thesis Overview 7

II. Literature Review. 8

2.1 Introductior.

2.2 Wargames

2.2.1 Map-Based Graphics 9

2.2.2 Animation. 10

2.2.3 Weather.

2.2.4 Intelligence 12

2.2.5 Report Generation. 13

Page

z .3 Graphical User Interfaces 15

2.3.1 User Interface Design 15

2.3.2 User Interface Characterictics. 17

2.3.3 User Interface Styles. 19

2.3.4 User Guidance. 20

2..4 The X Window System...

2.4.1 X Window System Principles. 21

2.4.2 'roolkits. 24

2.4.3 Ada -and X Windows 27

2.5 Summary 30

III. Design Methodologies. 32

3.1 Curre'n Methodologies. 32

3.2 Combined Methodology. 33

3.3 Summary 37

IV. System Requirements an%. Design. 38

4.1 System Requirements 38

4.1.1 System Prototypes 38

4.1.2 Data Retrieval. 44

4.2 Saber Design. 5

4.2.1 High Lcvel Design 46

4.2.2 Interface tc the X Window System. 51

4.2.3 Detailed Design......... 3

4.3 Summary 70

V. Sabe Vargame Implementation 71

5.1 Ada Bindings..... 1

5.1.1 Hex Widget Bindings 7

iv

Fage

5.1.2 Boeing Bindings 74

5.1.3 SAIC Bindings. 76

5.1.4 Combining the Boeing and SAIC Bindings 77

5.2 Using the Motif User Interface Language. 79

5.2.1 Advantages of UIL and MRM. 80

5.2.2 Drawbacks. so

5.2.3 Suggested Uses of the UIL. 82

5.3 User Interface Implementation 82

5.3.1 Ada Package Implementation. 83

5.3.2 Animation-Controller 84

5.3.3 Changes to the Hex Widget 87

5.4 Summary 89

VI. Conclusions and Recommendations 90

6.1 Summary 90

6.2 Recommendations 91

6.3 Conclusions. 93

Appendix A. Saber Class Descriptions 94

A.1 Application Classes. 94

A.1.1 Game Player Class 94

A.1.2 Terrain Class 95

A.1.3 Hexboard Class 97

A.1.4 Ground Unit Class 99

A.1.5 Aircraft Mission Class. 102

A.1.6 Airbase Class. 104

A.1.7 Report Class. 107

A.2 Motif Classes. 108

V

Page

A.2.1 Toggle Button Board Class 108

A.2.2 Menubar Class...

Appendix B. Saber History File..... 11

B.1 Events Affecting Aircraft Packalfe Status.... 11

B.1.1 MS1 - Mission Start....

B.1.2 M52 -Move 112

B.1.3 MS3 - Attacked By. 112

B.1.4 MS4 - Jettison. 113

B.1.5 MS5 - Mission Complete. 113

B.2 Events Affecting Airbace Status. 113

B.2.1 ABi - Attacked By. 114

B.2.2 AB2 - Aircraft Depart. 114

B.2.3 AB3 - Aircraft Arrive. 115

B.2.4 AB4 - Supplies Arrive. 115

B.2.5 AB5 - Was Intelled. 115

.14.3 Events Affecting Depot Status 116

B.3.1 DPI, - Attacked By. 116

B.3.2 DP2 - Supplies Depart. 116

10..3 DP3 - Was Intelkd 117

'9.4 Eve .ts Affecting Ground Unit Status. 117

B. 4. GRi - Move 117

B.4.2 GR2 - Attacked By..... 113

B.4.3 GR3 - Supplies Arrive. 118

B.4.4 GR4 - Nfwi Mission. 119

B.4.5 GR5 -Was Inteled 119

B.5 Events Affecting Satellite Status 119

B.5.1 STI - Satellite it..±:ncli. 119

Ai

Page

B.5.2 ST2 - Attacked By. 120

B.5.3 ST3 - Move. 120

B.6 Events Affecting Supply Trains. 121

B.6.1 LG1 - Supply Train Start. 121

B.6.2 LG2 - Move 121

B.6.3 LG3 - Attacked By. 122

B.6.4 LG4 - Supply Train Complete. 122

B-7 Events Affecting Hex Status. 122

B.7.1 HX1 - Attacked By. 123

B.7.2 HX2 - Mines Laid 123

B.7.3 HX3 - Clear Mines. 123

B.7.4 HX4 - New Bridge Built. 123

B.7.5 HX5 - Bridge Blown 124

B.8 Events Affecting the Weather 124

B.8.1 WX1 - Weather Change 124

B.9 Example Script. 125

Bibliography 126

Vita 130

Acesin o

List of Figures

Figure Page

1. Mann's Typical Combat Model 3

2. The X Client-Server Model 22

3. Basic X Environment 24

4. Typical X Windows Configuration 26

5. Application Program Configuration Using the SAIC Bindings 28

6. Application Program Configuration Using Boeing's Bindings 29

7. Application Program Configuration Using Unisys' Ada/Xt 31

8. Darryl Quick's Design Methodology 34

9. Saber User Interface Design Methodology 35

10. Mann's and Ness' Hexagon Orientation 40

11. Saber Hexagon Orientation 41

12. Comparison of Hexagon Layouts 42

13. Saber Air Hexes 43

14. Saber Hex Numbering Scheme 44

15. Saber User Interface Object Diagram 48

16. User Interface Relationship to the Ada Bindings 53

17. Saber Main Menu Bar 55

18. Saber Menu Hierarchy 56

19. Saber Center Assets 57

20. Saber Radial Assets 58

21. Saber River Segment 59

22. Terrain Display Options Bulletin Board 61

23. Sample Help Screen 62

24. Sample Saber Airbase Representation 63

25. Ada Binding to Hx.SetHexLabel 72

viii

Figure Page

26. Saber Module Diagram 83

27. Outline of Animation Controller Task 86

ix

List of Tables

Table Page

I.Application Object Classes. 47

2. Motif Object Classes. 47

3. Radial Asset Widths 60

4. Hex Side Asset Widths 60

5. Main Hexboard Customizable Objects 65

6. Theater Map Customizable Objects. 65

7. Parameter Conversion Rules 73

AFIT/GCS/ENG/91D-10

Abstract

One of the niost cost effective ways to learn and hone the skills necessary to con-

duct and win a war is through the use of realistic computer simulations of conflict, or

wargames. The Saber wargame was developed for just this purpose. Saber is a multi-

sided, theater-level simulation developed by the Air Force Institute of Technology for the

Air Force Wargaming Center. It models conventional, nuclear, and chemical warfare be-

tween aggregated air and ground forces. To aid in the realism, the effects of logistics,

satellites, weather, and intelligence are represented. Saber provides an avenue for senior

level joint service officers to improve their airpower employment skills.

(-Tis ss documents the object-oriented design and implementation of the graphical

post-processor for the Saber wargame. The user interface provides the game players with

the force status information necessary to plan and execute a theater-level air war. The

interface includes a report processor that produces reports for on screen viewing or printing.

The system also provides animation capabilities to allow the game players to see how the

day's battle unfolded in an effort to enhance the learning process.)

The user interface was written in the Ada programming language using the X Window

System and OSF/Motif widget set. Ada bindings developed by the Boeing Aerospace

Corporation and the Science Applic ions International Corporation (SAIC) were used to

interface to the various les. These bindings were supplemented with bindings to a

he fogram written by the Air Force Wargaming Center.

The combination of the X Window System and the object-oriented philosophy proved

effective in developing a user interface that is easy to use, predictable, and flexible. The

system can be executed on any hardware platform that supports the X Window System.

The use of the object-oriented paradigm should make it easy to enhance and maintain the

interface.

o(

?x

An Animated Graphical Postprocessor

for the Saber Wargame

L Introduction

War to the hilt between communism and capitalism is inevitable. Today,
of course, we are not strong enough to attack. Our time will come in fifty
to sixty years. To win, we shall need the element of surprise. The western
world will have to be put to sleep. So, we shall begin by launching the most
spectacular peace movement on record. There shall be unheard of concessions.
The capitalist countries, stupid and decadent will rejoice to cooperate to their
own destruction. They will leap at another chance to be friends. As soon as
their guard is down, we shall smash them with our clinched fist.

- Dimitry Manuilski, Professor,
Moscow's Lenin School of
Political Warfare

- 1930-

At all times and all ways, the military forces of the United States must be prepared for

war. The practicioners of war must learn proper techniques and master the tools at their

disposal if they hope to be successful on the battlefield [13]. Short of war itself, the best

way to learn and hone these skills is through military field exercises. Unfortunately, large,

joint exercises require extensive planning and are extremely costly. A more cost effective

approach to achieving the proper education or training is through the use of computer

simulations of conflict, or wargames. This thesis presents the design and implementation

of a graphical postprocessor and report generator for the Saber wargame.

1.1 Background

Saber is a multi-sided, theater-level wargame developed for the Air Force Wargaming

Center. It models conventional, nuclear, and chemical warfare at the aggregated air and

ground forces level with the effects of logistics, satellites, weather, and intelligence repre-

sented. Saber was designed to provide an avenue for improving the airpower employment

skills of senior Air Force leaders attending classes at the Air War College and the Air

Command and Staff College. Specifically, Saber exposes senior level joint service officers

to the types of high level decisions that must be made to plan and execute an air and land

campaign at the theater level.

The ground portion of the exercise was modeled and developed by Captain Marlin

Ness [36] in 1990 using the Ada programming language. Ness' object-oriented Land Battle

program is generic and adaptable to any combat area in the world. It uses discrete events

with fixed time steps to model conflict between land units at, or above, the division level.

In addition to the basic formulas for calculating attrition, Ness developed software for

land units to carry out such missions as attack, defend, withdraw, and support. The units

are located in and move across a series of interlocking hexagons. The hexagons provide a

good way to represent the type of terrain being traversed, mobility impediments such as

destroyed bridges or minefields, and the weather for a particular area. The output of Ness'

model consisted of rather lengthy and somewhat cryptic reports.

Following Ness' efforts, Captain William Mann [31] laid the groundwork for the

development of the air portion of Saber. Mann linked Air Force doctrine with a conceptual

model's framework to design an air battle for a new air/land model called Saber. For any

combat simulation to be credible, the foundations upon which the formulas are based must

be known and understood. Mann's thesis effort, therefore, involved both developing the

formulas and algorithms for stochastic air attrition as well as documenting the rationale

and justification of the design decisions.

Mann altered the definition of land units and added theater air defense units, air

bases, and aircraft packages. The missions the air units can fly include, among others,

counterair, interdiction, and close air support. The aircraft packages can move through

any of seven layers of air hexes corresponding to different altitudes above sea level. Ili size,

a single air hex encloses seven of Ness' ground hexes.

In his thesis, Mann presented an overview of the input and output processes required

for simulations as shown in Figure 1. He categorized output of a simulation into three

2

TYPICAL COMBAT MODEL

A POSTPOCSSO

O U T P U T

DTRED

Figure 1. Mann's Typical Combat Model[31]

forms: raw data, processed reports, and image reports. Several examples of each type are

given.

Captain Christine Sherry [51] developed an object-oriented design of the air war

using the framework provided b,, Mann. Sherry's Ada code implements the formulas and

algorithms to determine battle outcomes. It was at this time that the air battle and Ness'

land battle were integrated to form a single event driven simulation. This marriage was

necessary so that aircraft strike missions and land units could cause attrition onl each other.

The Saber wargame was designed to be executed at least once each day. Modelling

conflict across these different executions requires that information about each unit or entity

be saved in some manner. To accomplish this task, Captain Andre Horton [20] developed a

relational database using the Oracle database management system. tie designed numerouis

TERRA3

tables to hold the state of the objects in a manner that reduces replication of data. Horton

also developed the input screens that allow the players to enter their mission orders into

the system.

1.2 Problem

One of the most important components of any wargame is the representation of

output. The players of a wargame need some form of feedback in order to analyze the

situation and make decisions concerning the future employment of their forces. For the

most part, a graphical representation of the data enhances enjoyment and understanding on

the part of the participants. Accordingly, this thesis effort was directed toward providing

an animated, graphical postprocessor and report generator for the Saber wargame that

provided the participants with force status information necessary to plan and execute a

theater level air war. The graphical user interface was developed using the X Window

System along with the Open Software Foundation's Motif ' widget set.

1.3 Research Objectives

This thesis effort resulted in the development of a graphical postprocessor for the

Saber wargame. In designing and implementing this postprocessor, the following objectives

were set forth:

1. A graphical user interface will be developed to display battle outcomes as well as

the position and status of forces. The interface should be easy enough for novice

computer users to operate, while at the same time, it should not hinder the rapid

progress of more experienced users.

2. The user interface will utilize animation to show movement of land units and aircraft

packages. The animation will show the specific routes taken from the starting location

to the destination. It will also show the locations at which attrition was experienced.

'OSF, OSF/Motif and Motif are trademarks of the Open Software Foundation, Inc.

4

3. Since the exact location of all enemy forces is never known, an intelligence filter-

ing mechanism will be developed to provide estimated locations and strengths of

suspected enemy units to opposing teams.

4. Weather plays an important role in the success of most combat missions. In an air

war, it can affect the types of aircraft that can fly as well as the types of munitions

they can carry [46]. Therefore, a system for reporting forecasted and actual weather

will be developed.

5. While a picture may be worth a thousand words, the physical size of the omputer

screen limits the amount of information that can be displayed at any one time. Thus,

it will also be necessary to provide output in a hardcopy form. Status information

will be output in the form of reports, bar graphs, and charts.

1.4 Assumptions

The research and development efforts in this thesis were based on the following

assumptions:

1. The code developed by Ness, Sherry, and Horton correctly creates and updates the

databases.

2. The graphical interface is to be developed on a Sun 386i works.ation. It is to execute

on a Sun 386i or a Sparc Station II.

3. The graphical user interface is to be developed using X Windowu and OSF/Motif.

4. The Ada programming language is to be used as much as possible.

1.5 Approach

The basic approach employed in this thesis effort consisted of the following steps:

1. Conducted research in the areas of graphical issues in wargaming, graphical uscr

interfaces, and the X Window System. A proper understanding of these areas was

essential to the accomplishment of this thesis effort.

5

2. Selected a design methodology appropriate for solving the given problem. No one

methodology is correct for all projects. Some of the factors considered in making

this decision included the subject matter, the product being produced, the desired

features, and the associated risks.

3. Clarified the requirements using a paper prototyping system similar to that developed

by Mark Kross [29]. In any programming project, an otherwise correct program is

worthless if it does not meet the needs of the user.

4. Developed a preliminary object-oriented design. The design included the relation-

ships among objects as well as their attributes and methods.

5. Iteratively accomplished risk assessment, detailed design, coding, and testing. This

iterative process provided a way to control and measure changes being made to the

system as it was being developed.

1.6 Standards

The importance of standards in any programming effort cannot be overlooked. When

closely followed, standards can decrease the time it takes to become familiar with and

truly understand a computer program. This can help with debugging a program during

development as well as with maintenance efforts after delivery of the package. Thus, the

following standards were adhered to during the development of the software:

1. Documentation shall be in accordance with the guidelines developed for AFIT by

Dr. Thomas Hartrum [18].

2. The Ada use clause will only be used if absolutely necessary.

3. There will be a consistent use of naming and capitalization of variables and reserved

words.

4. The behavior of the user interface will closely follow the OSF/Motif Style Guide [4 I1.

6

1.7 Thesis Overview

Chapter II is a literature review of graphical issues that pertain to output in wargames,

the qualities of good graphical user interfaces, and the X Window System. Chapter III

briefly covers the design methodology chosen to successfully implement this project. Chap-

ter IV then goes into the requirements for the display screens and reports. It also describes

the high level and detailed designs for the system. Chapter V presents the design and im-

plementation issues faced in this effort. And lastly, Chapter VI presents a summary of the

project along with conclusions and recommendations.

7

IL Literature Review

2.1 Introduction

In order to begin developing a graphical user interface, we neec. to understand the

user's requirements and the role the user interface is to serve in fulfilling those requirements.

Once the "big picture" has been grasped, it is imperative that the user interface designer

have some understanding of the factors involved in creating a satisfactory user interface.

The last step in user interface development is to decide upon and master a computer

language or system that can be used to effectively implement tle design.

To achieve the required' understanding, a review of curreu" literature was conducted

in the areas of war games, graphical user interfaces, and the X window system.

2.2 Wargames

Wargames are simulations that model conflict between opposing forces using com-

plex rules to control entity movement and determine battle outcomes. In addition to attri-

tion, they may also model logistics, command and control networks, intelligence methods,

weather, troop morale, and military tactics. When used as an educational tool, their pri-

mary purpose is to assist the player in understanding the dynamics of warfare and the

processes involved in combat. As Lt Col John Madden writes, they allow the participants

to gain insights into decision processes that relate ".... the principles of war, war fighting

systems, and force employment decisions to military objectives of war" [23:111.

Peter Perla notes that a wargame must be interesting and relatively easy to play

if it is going to make the players "...suspend their inherent disbelief, and so open their

minds to an active learning process" [42:8]. Furthermore, the wargame must be accurate

and realistic if the learning is to be meaningful instead of misleading. With this in mind,

representation of warfare on a computer screen requires consideration of such factors as

using map-based graphics, utilizing animation, displaying forecasted and actual weather,

relaying intelligence information, and generating status reports. These factors are discussed

in the following sections.

8

2.2.1 Map-Based Graphics. In today's world, wargames and graphics go hand-in-

hand. Modern wargamers desire some way of visualizing the battle that is being simulated.

However, graphics capabilities can also benefit the developer of a simulation. William Biles

writes that are three basic ways in which graphics aid in simulations: [4:472]

9 To enhance the simulation results

* To facilitate the debugging and production of simulation programs

* To provide an interactive dialogue with a running simulation

One of the more important uses of graphics in wargames involves representing a

map of the battlefield on a computer screen. There are several options to consider when

choosing the method of representation. These include:

* Two-dimensions versus three-dimensiors

* Representation of elevation and contours

* Quality of the drawing (i.e., level of detail)

* Representation of terrain features

* Source of the drawing

* Coordinate representation (i.e., latitude and longitude, Universal Transverse Merca-

dian (UTM), Cartesian coordinates, and hexagon numbers)

Two of the most obvious sources of the maps include manually drawing the desired

features or digitizing a map of the desired area. However, these methods are not as accurate

or as fast in replicating the desired features as other methods available. [50]

Darryl Quick[44] utilized a database produced by the Central Intelligence Agency to

represent a two-dimensional, low detail map of Europe for the Theater Warfare Exercise

(TWX). The database, called Micro World Data Base II (MWDB-Il), allowed for the rep-

resentation of such graphical data as coast lines, country boundaries, lakes, and rivers. lie

used a conceptual series of layers to represent such features as geographic data, it/base

information, weather, and pop-up windows.

9

Quick reported a number of challenges which had to be overcome to use the MWDB-

II. The first was developing a conversion routine to translate between the MWDB-II

latitude/longitude system to the Cartesian coordinate system used in TWX. Secondly,

the MWDB-II uses individual files to store particular types of information for the entire

world. Quick found it more efficient in terms of speed to "...extract portions of each of

the applicable files so that all the geographical information for a certain region would be

stored together"[44:19]. A third problem faced was that the display routines provided with

MWDB-II could not easily be integrated into other graphics software that displayed the

additional layers of his conceptual model. Furthermore, the display routines did not lend

themselves well to Quick's zoom and pan capabilities. The fourth challenge concerned

accounting for distortion that occurs when mapping from a spherical surface to a two-

dimensional map representation. However, Quick discovered that the amount of distortion

introduced was insignificant for the European area he was using.

The MWDB-II is not the only source of precollected map data. In her thesis, Lieu-

tenant Nora Stevens described the Joint Theater Level Simulation (JTLS) developed by

the Jet Propulsion Laboratory. [55] This wargame uses map data provided by the Defense

Mapping Agency. The graphics screen displays maps overlaid with text and standard mil-

itary unit symbols. The Transportation Safeguards Effectiveness Model (TSEM) written

by the BDM corporation uses still another source of geographical data. This model uses

a U.S. Geological Survey Data tape produced from satellite and aircraft reconnaissance

information. The data is formatted in the Universal Transverse Mercadian (UTM) mode

and has elevation resolution accurate to 1 meter. BDM corporation used pre-existing pro-

grams to select a particular window of the world simply by specifying the degrees, minutes,

and seconds of latitude and longitude.[50]

2.2.2 Animation. A computer wargame may or may not use animation as part of

its graphical display. If properly used, animation can be beneficial to the military decision

maker in that it provides a way to view the dynamics of the battlefield. The players can

simply watch the battle unfold and see the outcomes of their decisions and what synergistic

10

effect their decisions had on the war.[5] Daniel Brunner lists the following benefits as being

cited most frequently by advocates of animation [8:1551:

e Animation he!ps those who have created a simulation to 'sell' their quan-
titative conclusions to skeptical upper managers.

* Animation, used during the model development cycle, helps the model
builder(s) build, verify, and validate the model.

* Animation, because it is flashy and fun, helps users and managers generate
and maintain interest in exercising the analytical power of simulation, to
the presumed benefit of everyone.

Given that animation has benefits to the wargaming community, the question re-

mains of what methods are available to product animated graphics. Stephanie Cammarata

presents a good summary of two animation techniques that have been commonly used in

the past. She calls these the "display processor" approach and the "incremental graphics"

approach. [9]

The display processor approach treats the graphical display as a process independent

of the simulation. This process redisplays the entire picture at regular intervals. Some

synchronization is required to ensure the simulation is not updating its state at the same

time the display processor is creating a new image. The main disadvantage of this approach

is that the entire simulation state must be redisplayed at each interval. This overhead

can become costly if the update interval is too small or the simulation state is updated

infrequently.

In the incremental graphics approach, the graphics display is updated as the sim-

ulation executes. Thus, the simulation controls the display by generating new images

only when the state changes. Cammarata suggests that this method may improve the

appearance of the display because only graphic attributes whose state has changed need

to be redisplayed. [9] Cammarata claims that, unfortunately, neither approach just de-

scribed lends itself well to efficient implementation in object-oriented simulations. As an

alternative, she proposes a "graphics-delta" approach which combines the best features

of each method. She writes, "The graphics-delta approach allows a user to declaratively

specify simulation objects and attributes, and define corresponding graphical images which

11

support the simulation's graphic display" [9:509]. In this approach, a display processor de-

termines what changes are necessary to produce a new image. The display is then updated

as needed.

2.2.3 Weather. The impact of weather in war is well understood but sometimes

overlooked. With the advent of all-weather aircraft, poor weather is playing a somewhat

diminished role in affecting which aircraft can fly. However, there are still a large number

of aircraft in the world that cannot fly in bad weather. Furthermore, weather plays an

important part in the success of the ground mission. As was recently witnessed in Saudi

Arabia, sudden sand storms can bring all ground activity to a virtual standstill. Weather

also affects the success of reconnaissance missions. If fog or clouds obscure the ground,

enemy activities may go undetected. James Dunnigan describes the effects of weather as

follows:

Rain, snow and excessive humidity cut mobility and the efficiency of weapons
and troops. Fog, clouds and mist obstruct observation. Fog aids the attacker
by masking his troops from enemy weapons.... Extremes in hot and cold tem-
peratures have adverse effects on troops and machines, as will high winds.
[13:484]

In a wargame, the same weather forecast may be applied to the entire theater of

operations. Alternately, the theater may be divided into zones, with each zone having

one type of weather. Marlin Ness suggested six types of weather for the land battle

portion of Saber. Each hex was assigned a value ranging from excellent down to very

poor. [36] William Mann, on the other hand, suggests only good, fair, and poor weather

be represented [31]. The type of weather predicted for an area may affect the weapons

loads carried by the strike aircraft. The three types of weather suggested by Mann are

sufficient to model this aspect of the wargame [46].

2.2.4 Intelligence. The primary function of intelligence in war is to gain timely

and accurate information about the enemy while keeping him from doing the same. Hlow-

ever, Dunnigan notes that due to limited reconnaissance resources and rapidly changing

conditions during war, you can only reveal about 10 to 20 percent of the enemy's actual

activities each day [13].

12

There is a wide spectrum of activities involved with intelligence gathering, assimila-

tion, and dissemination. However, an explanation of the full gamut of these activities is

beyond the scope of this research. For the purposes of the Saber wargame, the majority

of intelligence data comes from reconnaissance satellites and aircraft, returning strike mis-

sion aircraft, and ground units in contact with enemy forces. When simulating intelligence

gathering and reporting in a wargame, Perla writes that it is common practice to limit the

knowledge reported to the players in ways consistent with the player's actual capabilities

to obtain the data. He further suggests that to mimic "the fog of war," game design-

ers or controllers should restrict access to certain information and deliberately introduce

inaccuracies in the data that is reported. [42]

Mann and Ness discuss a way of modeling intelligence through the use of intelligence

indices and filters [31, 36]. Each unit has an intelligence index which is raised when

the entity has been observed via reconnaissance or contact with enemy forces. Ness also

suggests that the index value be decreased over time if the unit has not been recently

observed. The intelligence index is used to calculate an intelligence filter for the unit.

A random number generator is then used to determine the actual amount or type of

information to be provided to the players.

2.2.5 Report Generation. In an educational wargame simulation, it is desirable

to provide some type of feedback to the participants. This feedback assists the player in

understanding the impact of his force employment decisions and provides the necessary

information for him or her to make future decisions. Perla describes the qualities of the

feedback as follows:

The information provided to the player should be organized in a way that gives
him a sense of the possible effects of the important factors, along with enough
extraneous details to make the task of sorting out precisely what is important
sufficiently difficult to be realistically challenging and educational. [,12:199]

However, too much information can have adverse effects. If the players are over-

whelmed with data, they may become frustrated and lose interest in the game. It is.

therefore, important that the players can find the crucial data among the superilhions

information. Robert Sheridan writes that:

13

Even the most sophisticated and elegant simulation is worthless if the results of
the simulation cannot be interpreted. Large engagements involving many play-
ers and complex interactions producing reams of listings may lend themselves
to misinterpretations and negative effects. [50:822]

Mann takes the position that an overabundance of data is preferable in order the

keep the model flexible [31]. He believes the importance of a piece of data depends on

the perceptions of the individual players. Therefore, he suggests that the data should

be presented in both raw and processed forms. Raw reports consist of such things as

data input echo reports, detailed logistics reports, and the output of a transaction file.

Processed reports on the other hand, contain the same information as the raw reports, but

in a summarized and aggregated form. Of the processed reports, the ones most valuable

to high-level decision makers are often those which portray rates of change [3].

The information provided to the players commonly takes the form of tables or charts.

Tables present information in a row and column format in which some form of human

interpretation is still required to search for relevant trends and patterns. Charts (e.g.,

pie charts or bar charts) portray information through graphics that can be more quickly

understood by the players [31]. Glenn Simon describes a line graph used in the Small-Unit

Amphibious Operation Combat Model in which connected data points representing such

things as attrition are plotted once for each time interval [52]. The line graph shows the

correlation between the measured quantity and the passage of time.

A map-based graphical representation of the bkttlefield can also be used to display

information about the current situation. It is much easier to scan a map to determine

location of forces and the terrain in which they are located than it is to do the same thing

by looking at a table or chart. Some models currently being developed at the Air Force

Wargaming Center use map-based graphics with units represented using standard military

symbols and the unit's name under the symbol. Mann suggested new wargames should

follow in the same manner, but each unit should be augmented with "decision graphics"

[31]. U.S. Army FM 101-5-1 descri.,es decision graphics as two small circles divided into

thirds or quarters. One circle represents the degree of missicii accomplishment, while the

other can be used to represent the status of particular items of interest for a unit. rhe

14

amount that the circle is filled in or the color with which it is filled signifies different things.

[12] For example, a completely darkened circle means that a unit is unable to perform its

assigned mission.

2.3 Graphical User Interfaces

The user interface is the component of the application through which the user's

actions are translated into one or more requests for services of the applications, and that

provides feedback concerning the outcome of the requested actions [35]. The design of

efficient and easy to use user interfaces is receiving increased attention these days. Most

people now realize that if an application has a user interface that is "unfriendly" or difficult

to use, it is probably going to sit on the shelf unused.

2.3.1 User Interface Design. While much has been written recently c, the sub iect

of user interface design, it is hard to define exactly what is meant by a "good" user inte ce.

Often, the closest one can come to a definition is an enumeration of qualities a user interface

should have. Accordingly, it is not easy to design a user interface. Brad Myers describes

user interface design as more of an art than a science. However, he does list some things

to consider when producing a design [33]:

* Learn the application. In order to determine what data to display and how best to

display it, the designer must have a good understanding of the functionality of the

system. This is often one of the most significant steps in interface design as a poor

understanding can be difficult to overcome once the design progresses.

s Learn the users. The designer must determine the skill levels of the intended users,

their backgrounds, and the amount of training likely to be needed.

* Learn the hardware and environmental constraints. Is the system going to be run on

a particular type of machine? Will special input or output devices, such as mice or

plotters, be used?

* Evaluate similar products. The designer should study the user interfaces of similar

systems and of systems in the same environment.

15

* Determine the support tools. There are many toolkits available to assist in the design

and implementation of user interfaces. Also, user interface management systems

(UIMS) are becoming more popular as a means of increasing productivity in the user

interface design.

9 Plan to incorporate Undo, Cancel, and Help from the beginning. It is very difficult

to try to add these functions after the system is under development. The nature of

the actions impacts the design of the application's data structures.

* Separate the user interface from the application. The user interface and the ap-

plication should be modularized with the design of the former being based on the

functionality of the latter.

9 Design for change. The user interface will change more than the functionality of

the application. These changes frequently will be based on customer reaction to the

delivered system.

Two of the items in the above list deserve a broader discussion. These are the

support tools and the separation of the application from the interface. As previously

mentioned, the two major types of tool for user interface design are toolkits and user

interface management systems (UIMS). One problem with toolkits is that it is often difficult

to determine what part of the toolkit to use to perform a particular function. Furthermore,

since the work must be done over and over with each new application, consistency between

systems is in jeopardy [28]. UIMS, on the other hand, are designed to aid in "rapid

development, tailoring and management of the interaction in an application domain across

varying devices, interaction techniques and user interface styles" [30:33]. This may include

such things as handling user errors, providing helps and prompts, and validating users

inputs.

Separating the user interface software from the application software has many attrac-

tive benefits. Typical user interface design consists of one or more prototypes offered to the

user for review. The user then evaluates the interface and offers suggestions for improve-

ment. If the application and the user are closely interwoven the user interface designer may

have difficulty making the suggested improvements. The job can be much easier, however,

16

if the functionality of the application is separated from the user interface. Pedro Szekely

lists the following benefits of minimizing dependencies between the application and the

interface [56:45]:

* The user interface can be packaged into components that can be reused

in other interfaces.

* The user interface can be changed without impacting the functionality.

* Multiple user interfaces can be developed for a single application, each
one tailored to a different class of users, or to a different set of input and
output devices.

* The functionality of an application can be called from another program
directly, without simulating the input required by the user interface.

* The user interface can be specified by means other than programming, for
example, by interactively drawing and demonstrating how the interface
should behave.

2.3.2 User Interface Characteristics. Whatever design method is used, effective

user interfaces frequently have certain qualities. Brad Myers lists the following attributes

of so-called "good" user interfaces [34]:

9 Invisibility: The user interface should be transparent to the user, such that the user

has the sense that he is directly manipulating "real" objects on the screen. The user

interface should not interfere with the operator's concentration on the task being

performed.

* Minimal training requirements: No more than an hour of training should be neces-

sary before the user can be productive on the system.

* High transfer of training: The system's appearance and performance should be

similar to other systems dealing with the same subject matter. This external consis-

tency between systems will help reduce training times when switching from system

to system.

* Predictability: The objects and operations should perform similarly across contexts

of the system. This internal consistency leads to a system where users can anticipate

how the computer will behave.

17

Easy to recover from errors: The designer should assume users will spend around

30% of their time in error situations. Thus, the user interface should allow the

operator to easily recover from these errors. In addition to providing a "back-up"

capability, the system should inform the user of the cause of the error and how to

avoid repeating the same mistake.

9 Experts operate efficiently: It is generally agieed that most programs should be

oriented towards the novice or intermediate user who cannot consistently use the

system without some form of assistance [19, 58]. However, the system should also

provide the capability for experienced users to work quickly, unencumbered by an

overly simplistic interface.

* It is flexible: The user interface should allow users to operate in the manner with

which they're most comfortable. Users should be able to customize certain attributes

to their own style and taste.

Consistency in user interface design is generally regarded as a fundamental require-

ment [37, 49, 53, 54]. User interfaces should be consistent both within themselves and with

similar products used in an organization. Consistent user interfaces:

" enhance the transfer of skill across systems.

* allow users to predict system performance.

* allow users to focus on changes in the presented data.

Jonathan Grudin, however, feels the emphasis on consistency is misdirected. lie

feels that "when user interface consistency becomes our primary concern, our attention

is directed away from its proper focus: users and their work" [16:1164]. Furthermore, he

argues that interface consistency is an unattainable goal. Grudin gives several examples

to illustrate his point. One of these deals with the selection of default menu choices. One

approach for selecting the default would be to highlight the item the user is most likely to

select next. For example, after a user performs a "Cut" operation, the default for the next

menu selection should probably be "Paste". However, certain functions, when executed,

may be irreversible. For these functions, a confirmation screen is often displayed to make

18

sure the selected action really is desired and to give the user an opportunity to change

his mind. Experienced users will want to go ahead and perform the selected action the

majority of the time. However, it is safer in these cases to set the default to the "Cancel"

selection - the selection the user probably doesn't want. But, this violates the consistency

rule whereby the item most likely to be selected is highlighted as the default. Thus, Grudin

feels consistency should be considered in user interface design, but it is more important to

have a good understanding of the users, their task, and their environment.

2.3.3 User Interface Styles. Each user interface has a certain style or method of

getting information from the user. A user interface may have only one style or it may

have several, where different styles are used at different times or for different reasons.

The designer's choice of style will have a big impact on the software design. Some of the

more common styles are question and answer, command language, windows-icons-menus-

pointers (WIMP), forms, dialogue boxes, and direct manipulation.

Of the above listed styles, WIMP interfaces are among the most popular with novice

and intermediate users. It is relatively easy to learn and use this style of interface. Users

no longer must remember command syntax. Instead, command entry is accomplished by

pointing to a menu item. An important benefit is that recall of commands from memory

has been replaced by the easier recognition of functions [10]. WIMP interfaces also benefit

from the capability of displaying information in multiple windows on the screen at the

same time.

However, as Ian Sommerville points out, menu based systems suffer from a number

of problems [54:266]:

9 Certain classes of action, particularly those queries which involve logical
connectives (and/or/not) are awkwa:d or even impossible to express using
a menu system.

@ If there are a large number of possible choices, the menu system must be
structured in some way so that the user is not presented with a ridiculously
large menu. The most common structuring technique is hierarchical.

• For experienced users, menu systems are sometimes slower to use than a
command language.

19

To accommodate experienced users, menu systems will often also accept some type

of abbreviated command language, so that many of the menu selections can be bypassed.

Another problem with menu systems is that users may find themselves lost in the myriad of

levels of menus. One way around this problem is to show, in a small window, a graphical

representation of the menu hierarchy and where the user currently is in the hierarchy.

Alternatively, the user interface may retain all menus and submenus on the screen until

the user selects an executable command. This allows the user to review the selections

made up to a given point in time.

The actual selection of a menu item can be done in a couple of ways. One method is

for the selected action to be performed immediately when the user indicates his selection.

This method may be appropriate when speed is of more importance than accuracy. How-

ever, Smith and Mosier recommend a "dual activation" method for menu item selection

[53]. With this method, menu selection is accomplished in two steps. The first step involves

designating the selected option by movement of the cursor. The second step involves a

separate action to cause the selected menu item to be processed. This step may be imple-

mented by having the user select a separate box labeled "ENTER". Apple Computer calls

this same method the "noun-verb" principle [2].

2.3.4 User Guidance. User guidance refers to system documentation, the on-line

help system, and messages sent as a result of user actions. This is an area that doesn't

always receive the attention it deserves. However, it should be considered at every stage

of interface design because of the significant contributions it can make to effective system

operation [53]. According to Smith and Mosier,

The fundamental objectives of user guidance are to promote efficient system
use (i.e., quick and accurate use of full capabilities), with minimal time required
to learn system use, and with flexibility for supporting users of different skill
levels. [53:291]

Often, the first impression a user gets of a system is from error messages [54]. Thus,

the interface designer should make an effort to write error messages that are both polite

and constructive without being offensive. When possible, the error message should suggest

20

how the user might recover from the error. Alsc, the user shouild have the option of getting

a help message to give insight as to the cause of the error.

It is difficult for an interface designer to anticipate the level of help users will need.

To accommodate all types of users, the help system should provide different levels of help.

When the user first requests help, the system should provide a brief overview of. the topic

and give the user the capability to request a continuation of the help. Each successive level

of help would give greater detail on the subject [58].

2.4 The X Window System

User interfaces using some type of windowing system are fast becoming a common

feature of most corputer systems. As a result, users tend to expect all application pro-

grams to have a professional, polished user-friendly interface.[62] The X Window System

provides the mechanism to achieve this goal as well as many others described in the pre-

vious section.

The X Window System, or X, is a device independent, network transparent window-

ing system that allows for the development of portable graphical user interfaces [43, 48, 63].

It was developed in the mid 1980's at the Massachusetts Institute of Technology (MIT)

in response to a need to execute graphical software on several different types of incom-

patible workstations. Robert Scheifier of MIT and James Gettys of Digital Equipment

Corporation (DEC) developed X with the primary goals of portability and extensibility

[48]. Another major consideration was to restrict the applications developer as little as

possible. As a result, X "...provides mechanism rather than policy" [24:xvii].

To achieve these goals, the X Window System relies on the fundamental principles

of network transparency and a request/event system. Software toolkits are then layered

on top of the basic system to provide an easier programming environment.

2.4.1 X Window System Principles

2.4.1.1 Network Transparency. Oliver Jones describes network transparency

as the capability for X application programs running on one CPU to show their output

21

Client Client Client

Network

X Server

Figure 2. The X Client-Server Model

and receive their input ... using a display connected to either the same cpu, or some other

cpu" [27:4]. The X Window System achieves this transparency using a client-server model.

In X, each workstation that is to display graphical information (i.e., windows or their

contents) must have a process called the X server. According to Douglas Young, the X

server "... creates and manipulates windows on the screen, produces test and graphics,

and handles input devices such as a keyboard and mouse" [63:2]. A client, on the other

hand, is any application program that uses the services of the X server.

Clients and servers use the X protocol to communicate with each other over a network.

As Figure 2 shows, many clients can connect to a single server. Although not shown, a

client can also be simultaneously connected to several X servers. In X, the client(s) and

server can reside on the same physical machine, or they may be on separate machines.

22

2.4.1.2 Requests and Events. The network protocol mentioned in the last

section is the method with which clients and servers communicate. This section discusses

the mechanisms used to carry out the communication. The clients and servers communicate

with each other by sending requests and event notifications, respectively.

When a client wants to perform some action on the display, it communicates this

desire by issuing a request to the appropriate X server. Young states:

Clients typically request the server to create, destroy, or reconfigure windows,
or to display text or graphics in a window. Clients can also request information
about the current state of windows or other resources. [63:4]

The X server, conversely, communicates with clients by issuing event notifications.

Event notifications are sent in response to such user actions as moving a mouse into a

window, by pressing a mouse button, or pressing a key on the keyboard. The X server also

sends event notifications when the state of a window changes [63]. Applications programs

act on these events by registering callbacks with the X Window System. A callback is

simply a procedure or function that is to be executed when a specific event occurs.

Because of the reliability of the network, events and requests are sent asynchronously

and data can be sent in both directions simultaneously [47]. This configuration makes for

faster communication since the clients can send requests at any time and need not wait

for an acknowledgement. The protocol guarantees the messages will be received in the

proper order. Furthermore, there is no need for clients to continuously poll the server for

information. "Instead, clients use requests to register interest in various events, and the

server sends event notifications asynchronously" [47:xviii].

2.4.-1.3 Basic Components. The X Window System was designed to pro-

vide the mechanisms for the application program to control what is seen on the display

screen. The programmer is not constrained by any particular policy. These mechanisms

are embodied in a library of C functions known as Xlib. The Xlib routines allow for client

control over the display, windows, and input devices. Additionally, the functions provide

the capability for clients to design such thirgs as menus, scroll bars, and dialogue boxes.

23

Client Client

Application Window
Program Manager

Xlib Xlib

Network

X Server

Figure 3. Basic X Environment

Most X application programs make use of a special client program called a window

manager. This program utilizes the mechanisms of Xlib to relieve the application program

of such tasks as moving or resizing windows [47]. Brad Myers writes that a window manager

helps the user monitor and control different activities by physically separating them into

windows on the computer screen [32].

Figure 3 represents the most basic X environment. In this diagram, an application

program and a window manager operate as separate clients connected to a single server.

2.4.2 Toolkits. While applications programmers can use the Xlib routines to ac-

complish any task in X, many find the low-level routines tedious and difficult to use. .Jay

Tevis[57] noted that the simple action of creating and customizing a nIew window on the

display takes at least 24 calls to Xlib. To simplify the development of applications pro-

24

grams, many toolkits have been developed. Toolkits can be viewed as libraries of graphical

programs layered on top of Xlib. They were designed to hide the details of Xlib, making

it easier to develop X applications.

There are several toolkits available today. Some of the better known ones include:

the X Toolkit (Xt) from MIT, the Xrlib Toolkit (Xr) from Hewlett-Packard (1IP), Open

Look and XView from Sun Microsystems, and Andrew from Carnegie Mellon University.

Of those listed, Xt is one of the most popular [221. Along with Xlib, it is delivered as a

standard part of the X Window System.

Xt is an object-oriented toolkit used to build the higher level components that make

up the user interface [22]. It consists of a layer called the Xt Intrinsics along with a

collection of user interface components called widgets. Widget sets typically consist of

objects such as scroll bars, title bars, menus, dialogue boxes and buttons. In keeping with

the X philosophy, the Xt Intrinsics layer remains policy free. As such, it only prcvides

mechanisms that do not affect the "look and feel" (outward appearance and bcha'ior

of the user interface [62]. These mechanisms allow for the creation and management oi

reusable widgets. It is this extensibility along with its object-oriented design that makes

the X Toolkit attractive to user interface designers [60].

It is the programmer's choice of a widget set that determines the high-level "look and

feel" of the user interface. Just as there is no "standard" toolkit, there are many different

widget sets supported by Xt Intrinsics. However, as Young writes, "... from an application

programmer's viewpoint, most widget sets provide similar capabilities" [63:12]. Some o'

the more popular widget sets include the Athena widget set from MIT, the X Widget set

from HP, and the Motif widgets from the Open Software Foundation.

The Open Software Foundation (OSF) was formed in 1988 by a group of UNIX

vendors including, among others, IBM, HP, and Sun Microsystems. The Motif widget set

they created is designed to run on such platforms as DEC, HP, IBM, Sun, and Intel 80386

based architectures [25]. Eric Johnson list three advantages to using Motif [25:4]:

1. Motif provides a standard interface with a consistent look and feel. Your
users will have less work to do in learning other Motif applications, since

25

Application
Program

(C)
Motif

(C Routines)

Xt Intrinsics
(C Routines)

XIib (C Routines)

X Server

Figure 4. Typical X Windows Configuration

much of the work learning other Motif applications will translate directly
to your applications.

2. Motif provides a very high-level object-oriented library. You can generate
extremely complex graphical programs with a very small amount of code.

3. Motif has been adopted by many of the major players in the computer
industry. Many of your customers are probably using Motif right now.
You'll do a better job selling to them if your applications are also based
on Motif.

Structurally, the Xt Intrinsics is built on top of Xlib. The Motif widget set, in turn,

relies on the functions provided by the Xt Intrinsics. A typical application program may

make calls to the widget set, the Xt Intrinsics, or Xlib itself during its execution. n['his

configuration is illustrated in Figure 4.

26

Many user interface designers elect to design their own widget sets. Some do it for

the challenge. Others design their own widgets out of necessity. A user interface designer

may have a need for a special widget not provided by any ava '-ble widget sets. However,

designing custom widgets decreases the portability of the e or interface code and of the

application code in general [22].

2.4.3 Ada and X Windows. Originally, Xlib, Xt Intrinsics and most widget sets

were written in the programming language C. Until a few years ago, there was no way for

an application program written in Ada to use the X Window System. Recent efforts have

taken two approaches: Ada bindings to X and Ada implementations of the X libraries.

2.4-.3.1 Ada Bindings to X. In 1987, the Science Applications International

Corporation (SAIC) developed Ada bindings to the Xlib C routines. Their work was

performed under a Software Technology for Adaptable Reliable System (STARS) Founda-

tion contract, and is therefore in the public domain. According to Kurt Wallnau, '...a

substantial effort was made to map the C data types to Ada, and do as much Xlib pro-

cessing in Ada as possible before sending the actual request to the C implementation"

[60:5]. The actual Ada interface is accomplished through the use of Ada pragma interface

statements [21]. Put simply, the pragma interface construct allows an Ada program to call

subprograms written in another language [11]. Figure 5 shows the configuration of an Ada

program using the SAIC bindings to interface with Xlib. In this figure, the application

program has no access to any toolkits or widget sets.

Jay Tevis[57 successfully used the SAIC bindings in the development of a user inter-

face for a CASE tool. However, he found the excessive number of required SAIC function

calls to be a hindrance to effective program development. To offset this situation, he d&-

veloped a Machine-Independent Ada Graphical Support Environment (MAGSE). MAGSE

is basically an Ada toolkit/widget set similar to, but much smaller than, the X Toolkit.

In a manner similar to that used by SAIC, the Boeing Corporation recently developed

Ada bindings to a largL subset of the Xt Intrinsics and the Motif widget set. Their code

also provides access to a very limited subset of Xlib functions and data types. Like the

27

Application
Program

(Ada)

SAIC Bindings (Ada)

Xlib (C Routines)

X Server

0

0

Figure 5. Application Program Configuration Using the SAIC Bindings

SAIC code, Boeing's effort was sponsored by a STARS contract[26]. For the most part, the

subroutine names and parameter lists closely mirror the actual C routines. Also, Boeing

added a few subprograms to assist in the building of some commonly used parameter lists.

The bindings require the Verdix Ada Development System (VADS) version 5.5 or higher

to execute. While the documentation on the software is relatively sparse, it does indicate

which modules would require changes in order to port the bindings to other systems.

Figure 6 shows the configuration of an Ada program using only the Boeing bindings.

The dashed lines indicate that a small portion of the Xt Intrinsics and Motif functions are

lnavailable to the Ada program. Also, the application program cannot access the majority

of the Xlib functions.

The Ada application program accesses the Xt Intrinsics and Motif routines by calling

28

Application
Program (Ada)

I , Boeing BindingsAda

Motif Widgets
(C Routines)

Xt Intrinsics
(C Routines)

Xlib (C Routines)

X Server

Figure 6. Application Program Configuration Using Boeing's Bindings

the appropriate subprogram in the bindings. For the most part, the bodies of the called

subprograms contain code to convert the Boeing data structures and types to the types

needed by the corresponding C code. The subprogram bodies then call internal procedures

or functions that are bound to the Xt Intrinsics or Motif routines passing in the converted

parameters.

The bindings developed by Boeing and the SAIC are available at no additional cost

to the Department of Defense. Recently, several other corporations have also developed

bindings that are available for purchase [1]. These companies have basically taken one of

two approaches. Some have followed the approach taken by the SAIC and Boeing. Others,

such as Hewlett-Packard, took an alternative approach. To alleviate the need for much

of the type conversion used by the SAIC and Boeing bindings, Hewlett-Packard binds the

29

Ada subroutines directly to the corresponding C code. This results in very little code in

the package bodies. To accomplish this, they make heavy use of Ada access types.

2.4.3.2 Ada Implementations. The USAF Electronic Systems Division rec-

ognized the need to write X Windows application programs in Ada at a higher level than

through Xlib alone. In 1989, they sponsored a STARS Foundation contract to further

research the capabilities of interfacing Ada and the X Window System [22]. The resulting

reports documented efforts at integrating Ada with the X Toolkit (Xt).

As part of this STARS contract, Unisys Corporation developed an Ada implementa-

tion of (not bindings to) the X11R3 version of the Xt Intrinsics. "Ada/Xt," as it is called,

"provides an intrinsics package which provides the functionality of Xt used to manage X

resources, events and hierarchical widget construction" [61:1]. This software package uses

a modified and corrected version of the SAIC bindings to interface to Xlib. Ada/Xt also

includes a sample widget set consisting of ten Athena widgets and two HP widgets [61].

Unisys elected to develop an Xt implementation rather than Ada bindings, as SAIC

did. The reasons for this included [60:9-10]:

1. The issue of widget extensibility. Ada bindings would require that new
widgets be programmed in C.

2. The issues of inter-language runtime cooperation.

3. The issues of runtime environme,,t interaction.

Figure 7 represents a typical Ada appiication program using the Ada/Xt interface.

The Ada application code can make use of the provided widgets, make calls to Ada/Xt, or

make calls directly to the Xlib via the modified SAIC bindings. Thus, the full flexibility

of an X application program written in C is maintained.

2.5 Summary

This chapter consisted of a literature review in the areas of wargames, graphical

user interfaces and the X Window System. The section on wargames concentrated on

those issues important to designing and implementing a graphical display of a simulatcd

30

Application
Program (Ada)

Widget Set
(Ada)

Ada/Xt
(Ada Xt Intrinsics)

SAIC Bindings (Ada)

Xlib (C Routines)

X Server

Figure 7. Application Program Configuration Using Unisys' Ada/Xt

battlefield. Basically, the section discussed "what" should be presented to the user and the

benefits of using animation in the presentation. It illuminated the important categories of

information such as weather, intelligence and statistical reports that should be provided

to the game player to assist in the decision making processes. The review of graphical user

interfaces identified some of the desirable qualities of user interfaces. This section discussed

"how" a user interface should be designed so that the users will feel comfortable with the

system and can be more productive. Lastly, an overview of the X Window System and its

extensions was presented. The X Window System is a tool user interface designers can use

to construct professional, and hopefully, user-friendly interfaces. This section culminated

with a look at how application programs written in the Ada programming language can

interface to the X Window System. The next chapter presents an overview of some popular

methodologies used to develop software.

31

IX. Design Methodologies

An important part of any software development project is the overall model or

methodology for accomplishing the task. The methodology outlines the steps to be taken

from inception through implementation to retirement. It provides an organized approach

to software development and allows for management of the development effort.

3.1 Current Methodologies

Currently, there is no one standardized methodology being practiced. Unless a

method has the capability for flexibility, it is doubtful that any particular one will be per-

fect for all software development. However, some organizations have adopted one method

over the others and tend to force all software development activities to follow the adopted

mode. Some of the more popular methodologies in use today include:

9 Classic Life Cycle (Waterfall)

9 Evolutionary (Prototyping/Iterative)

* Program Transformation

9 Spiral Model

Mark Kross [29], Darrell Quick [44], and Peter Gordon [15] provided a thorough

review of the Classic Life Cycle, Prototyping, and Iterative design paradigms. The general

consensus was that the Classic Life Cycle does not lend itself well to the design of user

interface systems. This is at least partially due to the limited dialogue between developer

and user once the design starts. On the other hand, they found the prototyping and

iterative methodologies to be well suited to user interface systems. Prototyping provides

an avenue to communicate with the user to better determine the system requirements

and to help prevent designing the wrong system. The Iterative Design methodology has

the primary advantage that a working system is produced at each iteration. Thus, user

interface capabilities and improvements can be incrementally added to the system.

32

The Program Transformation methodology is emerging as an attractive alternative to

program generation. In this methodology, a formal specification of the system requiremcnts

is produced. This formal specification is then automatically transformed into syntactically

correct code. Some human intervention may be required to assist in the transformation.

The generated code is then validated aga nst the user's requirements. If the system must

be modified, then the adjustments are made to the formal specifications and the process is

repeated. With this method, there is no design stage whatsoever. Since a large part of user

interface generation is developing the screen layout, this system is not the most desirable.

This is because many screen designs can be produced from the same set of requirements.

The Spiral Model was developed at TRW as a risk-driven approach to the software

development process [6]. In this methodology, the following steps are repeated until the

program is fully developed:

s Determine objectives, alternatives, and constraints.

* Evaluate alternatives.

e Identify and resolve risks.

e Develop and verify the next-level product.

* Plan next phases.

Depending on the identified risks, the fourth step listed above may use the classic

life cycle, prototype, iterative, or transform approach. Barry Boehm writes [6:65]:

The spiral model also accomodates any appropriate mixture of a specification-
oriented, prototype oriented, simulation-oriented, automatic transformation-
oriented, or other approach to software development, where the appropriate
mixed strategy is chosen by considering the relative magnitude of the program
risks, and the relative effectiveness of the various techniques in resolving the
risks.

3.2 Combined Methodology

It is sometimes the case that no one methodology is best for a software design project.

Gordon and Quick each decided on a hybrid paradigm for their designs. They combined

33

/ Version 4

: Version 3"

," Version 2/

/ /
I I

Version I

Systm PrlimiaryInstall
Sysem relminryCoding Unit andSpecification Design Detailed and

Design PreliminaryMaintain

Debugging Testing

Figure 8. Darryl Quick's Design Methodology

the best characteristics of the classic life cycle, prototype, and iterative methodologies to

produce their paradigms.

Quick's model, as depicted in Figure 8, begins with requirements gathering using

prototypes to establish the requirements specification. A high-level preliminary design was

then produced. This was followed by a detailed design, coding, and testing in an iterative

manner. After the last version was produced, the system entered the installation and

maintenance phase. Gordon's method was similar, but used prototypes as a part of the

iterative detailed design, coding, and testing phases.

The combined methodologies developed by Gordon and Quick appeared to have

considerable merit for the design of user interfaces. As such, the methodology used for the

34

Problem
Domain
Analysis

Initial
Prototype

Development

High-Level Iteration n

Figrn.SbrUe nefaeDsg ehdlg

Iteration 3 ,

with Iteration 2

Tvo l e a Iteration I
i eEjum to aegreso

and Deaml Generas Unit Testing

has l Design Code Testing

and System

Testing

S Installation

Maintenance

Figure 9. Saber User Interface Design Methodology

Saber user interface, illustrated in Figure 9, followed the general outline of their method
with a few notable additions.

The first addition involved an explicit domain analysis phase before developing the

initial prototype. Before jumping into a software design, the software engineer should have

an understanding of at least the fundamental terms and concepts of the problem domain. If

the software engineer has current experience in the domain area, this step may be omitted.

However, if the designer has little or no experience or if recent advances have occurred in

the field, a study or review of current topics should be conducted. Accordingly, the domain

analysis conducted for this user interface consisted of-

* Reviewing recent thesis efforts in the area of wargames.

* Reviewing recent thesis efforts in the area of designing user interfaces for wargames.

35

e Conducting a literature review in the areas of user interfaces and the X Window

System.

* Participating in numerous meetings with others involved in wargaming research.

After conducting the domain analysis, initial prototypes were developed. These

consisted of sample screen layouts produced in a storyboard manner to show the expected

behavior of the system. Accompanying each sample screen was a description showing the

function, control flow, input fields, integrity constraints, and processing as was suggested

by Kross [29]. In addition to the sample screens, several sample reports were produced to

be reviewed and critiqued by the Air Force Wargaming Center personnel. The prototype

stage was followed by an object-oriented high-level design of the overall user interface.

The remaining additions in the new methodology were part of the iterative stage.

Before conducting the detailed design for each iteration, an evaluation and planning stage

was conducted. This consisted of evaluating various alternatives for i-plementing the next

portion c.: the high-level design. For each alternative, the expected benefits and risks were

weighed. In addition, any constraints placed on the user interface were considered for

possible impact. A plan was then developed for implementing the selected alternative in

a manner that would maintain or enhance the object-orientedness of the overall design.

Efforts were made to reuse as many components as possible while maintaining high co-

hesion and low coupling between modules and iterations. Using the appropriate plan, a

detailed design was created. This, in turn, was used for generating the code for the given

iteration. Unit testing was then performed on the individual module to ensure the proper

functionality was achieved. Any time a major change or modification is made to a piece of

software, there is the possibility of introducing errors into previously correct code. Thus

unit testing was followed by regression testing to ensure the newly added module did not

adversely affect the functionality of previously written modules.

After the last iteration was complete, the post-processor user interface software was

integrated with the air and land simulations, the database software and the input. interface

to form the combined Saber theater warfare simulation. Installation and maintenance of

the combined system was left to the Air Force Wargaming Center.

36

3.3 Summary

This chapter presented a summary of design methodologies currently being used for

software development. This was followed by a description of the hybrid methodology used

by Gordon and Quick. Lastly, the methodology chosen for Saber's post-processor user

interface was described. This basically iterative methodology was a modified version of

Gordon and Quick's method with an expl' it domain analysis step added. Each iteration

consisted of a risk analysis, detailed design, coding, unit testing and regression testing.

The next chapter covers the requirements for the display screen and reports as well as the

high level and detailed designs of the user interface.

37

IV. System Requirements and Design

Wargames and their user interfaces have been around for many years. Every wargame,

be it a board game or a computerized simulation, has some form of user interface. This

is because the game's players must have some idea of the location and status of forces in

order to effectively play the game. In fact, the user interface plays an important role in the

success and acceptance of the wargame. People will refrain from playing a game if they do

not understand what is happening or if they find it difficult to control their forces.

Because of this importance, most user interface designers seek to display information

to the game player in a way that is easy for the user to understand and control. However,

deciding what to display and how best to display it is not an easy task. It is often the case

that the user or designer may not have a solid understanding of what the game should

look like before the user interface is written. A common method for overcoming this lack

of understanding is through the use of prototypes.

This chapter first describes how prototypes were used to determine the system re-

quirements. It then presents the high level and detailed design of the user interface. Since

this project used an object-oriented design, the detailed design of each object or topic is

presented individually.

4.1 System Requirements

The requirements and desired features for the Saber wargame were collected from a

variety of sources. Some were obtained from wargames currently in use at the Air Force

Wargaming Center or elsewhere. Others came from reviewing requirements for various

wargames currently under development [14]. Still others came from discussions of the

Saber research group and through the review of system prototypes.

4.1.1 System Prototypes. Two types of prototypes were used to determine the

system requirements. The first consisted of using sample screen layouts whicl graphically

depicted the possible appearance and behavior of the system. The second form of prototype

38

consisted of sample reports depicting the aircraft mission, airbase and land unit summaries

to be provided.

4.1.1.1 Sample Screens. Most wargames with a graphical user interface have

some common features. For example, it is common to display geographical regions and to

use some charater or symbol to designate the combatants. However, the specific represen-

tation of these and other items usually varies depending oil the purpose of the simulation

and on the intended audience. To gain a better understanding of the requirements for

the Saber wargame, several sample screen layouts were generated using a commercially

available, personal computer based graphics program. The sample screens were used to

identify the following requirements:

* The user should have some method of determining the status of a base, unit or

aircraft misssion.

a The user should have the capability to zoom in and out, as well as to pan across the

display.

e The user should be able to specify which terrain features are displayed on the map.

* The user should be able to specify which units and bases are displayed on the map.

For example, the user may want to limit the display to Blue airbases and aircraft

missions.

* The user should have the capability to display the weather conditions on the map.

The sample screens also brought to light the issue of hexagon orientation. On the

original sample screens, the hexagons which make up the map were oriented with the points

to the north and south and the flats on the east and west sides. Figure 10 illustrates this

hex layout. This is the orientation that was described in Mann's and Ness' thesis efforts.

However, after some discussion, it was decided that the points of the hexagons for the

Saber wargame would be on the east and west sides with the flats on the north and south

as shown in Figure 11. The primary reason for choosing this orientation was that most of

the wargames currently in use or under development at the Air Force Wargaming Center

orient the hexagons with the points on the cast and west.

39

Figure 10. Mann's and Ness' Hexagon Orientation

A secondary reason for orienting the hexagons with the points on the east and west

sides concerns the layout of information within the hex. Having the points on the east and

west results in the hex being slightly wider across the center. Thus, a longer text string,

such as a city name, can be placed in the center of the hex. Also, with this orientation, the

flats are on the north and south sides of the hex. This provides two convenient locations

to place the hex number; either just below the top flat or just above the bottom. With the

hexes oriented the other way, the hex numbers must be shifted towards the center. This

takes away some space for drawing other objects in the hex. Figure 12 illustrates these

points.

Captain Mann described the hexboard as consisting of seven layers or planes of

hexagons. Layer one corresponds to the ground level and the other six layers correspond

40

Figure 11. Saber Hexagon Orientation

to different altitudes above the ground layer. Layer one is composed of individual hexagons

which measure 25 kilometers from side to side. Layers two through seven are composed of

air hexes. An air hex is made up of the equivalent of seven ground hexes arranged as six

hexes surrounding one center hex. Figure 13 illustrates this concept.

Each hexagon is identified with three numbers representing its location in the X, Y.

Z coordinate space. The first number represents the layer in which the hexagon is located.

The second two numbers correspond to the X and Y coordinates of the hex. Numbering

of hexagons begins in the lower left corner of the hexboard. The X coordinate of the

hexes increases as you go from left to right. Similarly, the Y coordinate increases from the

bottom of the hexboard to the top. Figure 14 also shows the numh-riig scheme for the

ground hexes. In this figure, the Z coordinate is not explicitly listed.

41

ABABABABA ABABABAB
! 33-2 33-28

Points On North/South Points on East/West

Figure 12. Comparison of Hexagon Layouts

4.1.1.2 Sample Reports. Determining what information to provide to the

game players is not always easy to do. While it can be difficult, if not impossible, to

anticipate all the needs of a particular individual or team of players, the system designer

must make enough information available in order to satisfy the needs of as many potential

users as possible. However, these needs may vary depending on what the player's expect

to learn from playing the game. Thus, the system designer must also be careful not to

restrict the scope of the reports that are provided.

With this in mind, the sample reports for the Saber wargame were designed with en

emphasis on providing an abundance of information to the game participants. A require-

ment was then placed on the user interface to allow the players to select a standard subset

of the reports to be generated each day. Furthermore, the user interface was required to

42

Figure 13. Saber Air Hexes

allow any report to be viewed or printed from the terminal at any time without the player

having to memorize any operating system commands.

In an effort to increase the portability of the Saber wargame, a requirement was

imposed that all reports would be restricted to a maximum width of 80 columns. Although

many sites have printers capable of printing up to 132 characters on a line, designing reports

for these wide carraige printers could cause problems if the game is run at a location with

only the narrower printers.

Another requirement of the reports was to provide both daily and cumulative reports.

The daily reports are useful for showing the status of forces and resources at a specific

point in time. The cumulative reports, on the other hand, are useful for determining

trends. For example, cumulative reports can show such things as the percentages of aircraft

43

Figure 14. Saber Hex Numbering Scheme

apportioned to various types of missions, or the total aircraft lost by mission type during

a campaign.

The sample reports also raised the issue of whether the mission input reports should

be sorted by mission number or by target number. The latter was chosen because it allows

the players to scan the reports to see what assets have been assigned to each target.

4.1.2 Data Retrieval. Data to be used by a simulation or wargame is typically

stored in a database, in files, or in a combination of the two. Retrieval of data from

a database can usually be accomplished fairly easily using the methods provided by thle

database software. For some of the more advanced database packages, this can be accom-

plished using such methods as a Structured Query Language (SQL) or query by examnple.

Depending on the language used to write the wargame, the queries can somctirncs lbe

44

embedded in the applications software. This can greatly simiplify data retrieval for the

simulation.

However, if the data used by the wargame is stored in or retrieved from a database,

then the database software must physically reside on the machine which is executing the

wargame. Since there are several quality database packages in use today, writing a simu-

lation that relies on a particular database system could limit the number of machines and

locations that could be used to execute the wargame.

Because of this, all data for the Saber wargame is stored in "flat" files. These files

are constructed to mirror the relations that a database would use to store the data. While

the use of these files makes the wargame more portable, it also increases the complexity of

data retrieval. Routines must be written to fill internal data structures with information

read from the files. Because the data is normalized, the information for a particular entity

may be spread out over several files. Every record in a file is uniquely identified by one or

more fields designated the key fields. It is these key fields that tie the information together

from two or more files. Thus, when loading the internal data structures, the ioutines must

be written to search through the files to find the entry with the matching key field. Once

the record is found, the software must extract the desired information from the appropriate

fields.

4.2 Saber Design

The design of a software system is one of the most important parts of a software

development effort. Extra effort spent designing a system can reduce the number of errors

generated in the coding phase of a project. Of the many design styles available, object-

oriented design lends itself particularly well to user interfaces using the X Window System

and the Motif widget set. The Motif widget set, itself, is composed of object classes and a

hierarchy of objects (widgets) that inherit attributes from objects above them.

A high level object-oriented design was accomplished for the Saber user interface

after the system requirements were determined. This entailed identifying the objects,

their attributes and the methods (or actions) which operate on the objects. After the

45

high level design was completed, the interaction between the user interface and the X

Window System was formalized. This, in turn, was followed by a detailed design and

implementation of each object in an iterative manner as was described in the last chapter.

4.2.1 High Level Design. The first step in producing the object-oriented design

was to identify the major objects and object classes. Booch defines a class as a set of

objects that share a common structure and a common behavior[7:93]. An object is then

an instance of a class. In a user interface, everything that is displayed can be considered as

an object. Thus, a good idea of what the actual display would look like was needed. The

sample screens used for requirements gathering proved extremely useful in this regard.

The main display consisted on a window with a menu bar across the top and a large

map underneath. The map was composed of hexagons which contained various terrain

attributes as well as land units and airbases. Additionally, Ross lists the following as

sources of potential objects[45:9]:

* People: humans who carry out some function

9 Places: areas set aside for people or things

* Things: physical objects, or groups of objects, that are tangible

o Organizations: formally organized collections of people, resources, facili-
ties, and capabilities having a defined mission, whose existence is largely
independent of individuals

o Concepts: principles or ideas not tangible per se; used to organize or keep
track of business activities and/or communications

o Events: things that happen, usually to something else at a given date and
time, or as steps in an ordered sequence

The object classes identified from the screen prototypes are shown in Figure 15 in

a manner similar to what Booch suggests[7]. They were classified as either application

or Motif object classes. The application classes, described in Table 1, are those things

that were unique or specific to the Saber wargame. The Motif object classes are container

widgets composed of a group or groups of child widgets. The purpose of these object

classes is to consolidate the routines necessary for the creation and modification of the

particular objects. One way in which these objects are modified is through the addition of

its children. The Motif object classes and their descriptions are shown in Table 2.

46

Table 1. Application Object Classes

Object Description
Game Player The game player is the person playing the wargame.

Reports Reports are statistical summaries presented to the
game players.

Airbases Airbases are air force bases belonging to the Red,
Blue, or neutral forces.

Land Units Land units are army ground units belonging to the
Red, Blue, or neutral forces.

Aircraft Missions Aircraft missions are collections of aircraft grouped
to accomplish a specific task. They may be composed
of aircraft from Red, Blue, or neutral airbases.

Terrain Terrain features are natural or man-made assets
located in or on a hexagon. They include such things
as rivers, roads and cities.

Hexboard A hexboard is a collection of hexes arranged in a
Irectangular pattern.

Table 2. Motif Object Classes

Object Description
Menubar A menubar is a collection of pulidown menu widgets

associated with topics on a rectangular widget across
the top of the display area.

Toggle Board A toggle board is a collection of toggle button widgets
along with OK, CANCEL, and HELP pushbuttons.

47

Application Object Classes

Obj Hexboard Reports TgeUnits

Classes ,.o

Figure 15. Saber User Interface Object Diagram

After the major classes were identified, the next step was to specify the class at-
tributes. Many of these attributes were needed for the creation and manipulation of the

various objects. Others are features needed for producing the graphical objects on the
screen. Th Patabase relations produced by Capt Andre Horton[20] were the primary

source for the attributes of the application objects. The attributes for the Motif objects

consisted of the Motif resources applicable to the particular objects. These included such

things as the width, height, margins and offsets of the child widgets.

Identification of the attributes was followed by a listing of the methods or actions to
be provided for each object class. Initially, these lists did not include any parameters. The

intent was simply to document what actions could be performed on the objects. Onice this

was done, the methods were closely analyzed and the required parameters were (leternu nedl.

48

While identifying the methods and parameters, the reasoning and justifications for each

decision or choice were documented. This proved to be quite useful when coming back

to the object classes to complete the detailed design and implementation. Following is a

more detailed description of each class:

* Application Object Classes

- Game Player: This class has methods for setting and retrieving the player's

side, the seminar number, and the current day.

-"Reports: This class has methods for setting a standard set of reports, printing

reports, and viewing reports.

- Airbases: This class has methods for creating, displaying, and erasing airbases;

and for displaying and erasing status boards.

- Land Units: This class has methods for creating, displaying, and erasing land

units; and for displaying and erasing status boards.

- A:rcraft Missions: This class has methods for creating, displaying, and erasing

aircraft missions; and for displaying and erasing status boards.

- Terrain: This class has methods for reading, displaying, and erasing terrain

information. The terrain information consists of trafficability, roads, rivers,

railroads, obstacles, Forward Edge of Battle Areas (FEBA's), country borders,

coast lines, pipelines and cities.

- Hexboard: This class has methods for the creation and deletion of hexboards.

9 Motif Object Classes

- Menubar: This class has methods for the creation of menubars and for the

addition of pulldown menus.

- Toggle Board: This class has methods for the creation and deletion of bulletin

boards that contain toggle buttons. It also has methods for the creation and

deletion of data structures to be passed as parameters for the board creation.

49

The object classes just described were the basic building blocks used to create the

user interface. However, the classes by themselves are not useful until objects are instan-

tiated. Objects can be instantiated by another object or by some controlling module. In

many programs, this controlling module is referred to as the main driver procedure. Un-

fortunately, this design does not work very well for programs which use the Xt Intrinsics.

The reason for this is that the main procedure, after performing various initializations,

typically enters a main loop through a call to the XtMainLoop function. This routine is an

infinite loop that retrieves and dispatches events from the X event queue. When an event

is dispatched for which a callback has been registered, processing in the main procedure is

suspended and some other subroutine is executed. These callback procedures are the ideal

place for object instantiation to take place.

The application programmer has a range of options available when developing the

callback procedures. At one end of the spectrum, an individual callback can be written for

every event that the program needs to be made aware of. For example, each button on a

pulldown menu can have its own callback procedure. At the other extreme, a single callback

can be written that handles all events. If this method is used, the callback procedure must

be able to determine what type of event triggered the callback. This can be accomplished

by examining the event record created by the X Window System and passed as input to

the callback procedure. Another way to determine what the event was is through the use

of "client data" passed to the callback. This data is specified by the programmer when

registering callbacks with the system. The client data can be of any type, and used for

any purpose, that the programmer wishes. Thus, the client data could be used to identify

why the callback procedure was entered.

When designing the arrangement of the callbacks, it is important to take into con-

sideration the Motif widget hierarchy. The widgets used in an application program can be

arranged in a hierarchy with all widgets, except for the top level widget, having exactly

one parent widget. The widget id of the parent must be specified whenever a new widget

is to be created. Thus, if a procedure is to create a new widget, it must have access to

the widget's parent. One method of obtaining the parent's widget id is to receive it ;1, an

input parameter. By default, callback procedures always receive a parameter specif)ing

50

the widget for which the callback was registered. If this widget is not the desired parent,

then another alternative is to pass the parent's widget id as client data. Unfortunately,

the parent's widget id may not be known at the time when the callback was registered.

In this case, the only alternative is to make the parent widget globally available to the

callback procedure. This, then, suggests that the callback procedures be grouped such that

all needed parent widgets are visible. It makes sense to keep the group of global variables

and associated callbacks as small as possible.

For the Saber user interface, several of the instantiated objects are either widgets

themselves or require access to certain widgets. Since the selection of items on the menus

presented to the user often involve the creation or manipulation of these objects, the

design called for one or more controller packages that contained the callback procedures

for each menu item. If the menu items can be separated into groups such that each group

of associated callbacks deals with a single or small set of widgets and objects, then it is

sometimes possible to develop a separate controller package for each group.

For the Saber wargame, it was not possible to group the menu items in the manner

just described. Therefore, a main driver procedure and a controller package were added to

the application and Motif objects in Figure 15. It is important to realize that the Saber

design is still object-oriented. The issue is when and where the objects are to be instan-

tiated. A complete description of the object classes, their attributes and their methods is

given in Appendix A. The high level design of the was followed by a formalization of the

relationship between the user interface application software and the X Window System

libraries.

4.2.2 Interface to the X Window System. Some user interfaces can be implemented

by simply calling subroutines in the Xt Intrinsics and Motif widget set. Others may require

additional calls to selected Xlib routines. The Saber user interface fit into the latter

category. Displaying the graphical symbols for the airbases, aircraft missions, and land

units required the use of low-level Xlib subroutines to create the appropriate pixinaps.

Adrain Nye defines a pixmap as an array of pixel values that is stored in memory until it

is copied into an existing window (38].

51

Due to the need to access the Xlib, Xt Intrinsics and Motif libraries, it was clear

that, as a minimum, the SAIC bindings would have to be used. The choice remained of

whether to supplement it with the Boeing bindings or the Ada/Xt software developed by

Unisys. Using the Ada/Xt software would have required the full or partial development

of an Ada implementation of the Motif widget set. The Boeing software, on the other

hand, already had bindings developed for Motif. Thus, the decision was made to utilize

the Boeing bindings in combination with the SAIC software to develop the Saber user

interface.

The Saber user interface was also designed to use a hex widget designed by the Air

Force Wargaming Center. This object-oriented widget contains routines to create and

manipulate hexboards. Routines are provided to display certain features inside of a hex.

These features include rivers, roads, cities, city names, forestation, and background color.

Since the Saber user interface displays a few more hex attributes, some modifications to

the hex widget were required.

According to the documentation, "The hex widget is a constraint widget which allows

child widgets to be mapped inside hexes"[17]. This means that the symbols for airbases,

aircraft missions and land units could be created as pushbutton widgets and assigned to

particular lexes. The hex widget keeps track of how many widgets (unit/base/mission

symbols) are assigned to each hex. If more than one is widget is located in a hex, the hex

widget displays a "stacking dot" to alert the game players.

Since the hex widget is written in the C programming language, Ada bindings had

to be developed. These hex bindings were modeled after Boeing's bindings to the Motif

widget set. The mapping from Ada to C was fairly straightforward. No internal Ada data

structures were needed. In fact, most of the bindings used only the address of the hexboard

and numeric values for such things as the width, hex sides, and colors.

The relationship between the Saber user interface and the various Ada bindings is

shown in Figure 16. The figure accurately reflects that the Boeing software contains bind-

ings to a small subset of the Xlib functions in addition to the bindings to the Xt Intrinsics

and Motif widget set. The user interface may make calls to the Boeing bindings, the

52

Saber User Interface

Boeing Bindings I Hex Bindings
I__________SAIC

Motif Widgets Hex Widget Bindings

Xt Intrinsics

Xlib

Figure 16. User Interface Relationship to the Ada Bindings

SAIC bindings, and the hex widget bindings. In fact, interactions between the application

program and the X Window System are made solely through these bindings.

4.2.3 Detailed Design. The detailed design phase involved an in depth analysis

of each object and interface feature to determine the best design. The goal was to design

the objects in sufficient detail to allow for effective implementation. An overriding concern

was to maintain or increase the object-orientedness of the high level design. Since it was

known that the user interface would be implemented using the X WVindows System, it

made sense to design the objects to take advantage of the capabilities provided by Xlib,

the Xt Intrinsics, and the widget sets.

The following sections describe the detailed design issues for the Saber user interface.

53

4.2.3.1 Main Menu Bar. An important part of a user interface is the design

and placement of the primary system controls. The layout of the controls depends largely

on the nature of the application. Some of the more popular approaches are to use a control

panel, a menu bar, or pop-up menus [41].

A control panel is appropriate for grouping like controls that have similar functions.

Control panels are commonly used in commercially available graphics packages such as

DrawPerfect or Dr Halo.

A menu bar is a horizontal bar located just below a window's title area. It contains

a list of menu topics that can be selected with a mouse or through the keyboard. When

an item on menu bar is selected, a pull-down menu appears with selectable items related

to the chosen topic.

A pop-up menu has many of the same features as a pull-down menu. Pop-up menus

may appear whenever the sprite is in a window and the user clicks on the left mouse button.

Their primary advantage is that no mouse movement is required to generate the menu.

Another advantage is that no space on the screen is required until the menu is activated.

However, this can also be a disadvantage in that the user may have no idea that the pop-up

menu even exists.

Which of the methods to use is a decision the application programmer must make.

However, the OSF/Motif Style Guide notes that, "Because menus are a principal method of

interaction between users and OSF/Motif applications, most applications require a menu

bar"[41:4-3]. The advantage to using menu bars is that the user has a visual cue of what

topics are available. The user can easily browse through the pull-down menus on the menu

bar to see an informal "table of contents" for the interface.

In keeping with OSF/Motif guidelines, the Saber user interface was designed using

menu bars. The main menu bar is shown in Figure 17. The pulldown menu hierarchy is

displayed in Figure 18.

4.2.3.2 flexes and Terrain. The hex widget written by the Air Force W\argani-

ing Center was an integral part of the Saber user interface. Originally, the hex widget

provided procedures for adding roads, rivers, cities, and city names to individual hexes.

54

Visibility Zoom Animation Mission Input Reports Quit Help

Figure 17. Saber Main Menu Bar

Modifications to the hex widget were necessary to include procedures for adding railroads,

pipelines, country borders, FEBA lines, air hex borders, bridges, and minefields to tile

hexes.

The assets for each hex can be classified as center, radial, and hex side assets. Center

assets are assets drawn in the center of a hex. They consist of cities and city names.

Figure 19 illustrates a hex with center assets. Radial assets are assets drawn from tile

center of a hex to a hex side. The radial assets are roads, railroads, and pipelines. Figure

20 shows a group of hexagons with various radial assets. Hex side assets are drawn along

the side of a hex. They consist of rivers, country borders, FEBA lines, air hex borders,

bridges, and minefields.

The hex widget maintains the asset information about each individual hex in its

internal data structures. When the hexes are drawn on the screen, the hex widget treats

each hex as an individuial entity and only draws assets inside of the hex. For center assets

and radial assets this creates no problem. However, this does create an interesting situation

for the hex side assets.

55

Visibility- Zoom - Animation-Mission Input-Reports- Quit - Help

-Show Theater Map
Confirm

[Zoom In Start Cancel

-Zoom Out Stop
-PauseReset View -View Blue Reports
RResumeResumePrint Blue Reports

-Change Base/Unit Visibility -View Red Reports

-Change Terrain Display

Change Weather Visibility -Print Red Reports

Define Standard Set

Print Standard Set

Figure 18. Saber Menu Hierarchy

The hex side assets are designed to be drawn along a line segment which is shared

by two hexes (except for the hex sides that form the outside edge of the hexboard). Since

the hex widget only draws inside of a hex, this means each hex draws one half of the side

asset. Thus, as illustrated in Figure 21, to draw a river between two hexes, a river segment

must be added to each of the hexes. The hexside to receive the river corresponds to the

side that the hexes have in common.

For any given hex, there is always the possibility that there will be more than one

type of radial asset to be drawn to the same side or that there will be more than one type

of hex side asset to be drawn along the same hex side. Thus, special consideration was

given to the widths of the radial and hex side assets. The widths had to be assigned so

that all hex assets are visile on tl'e screen. The assigned widths (in number of pixels) for

56

Figure 19. Saber Center Assets

the radial assets are shown in Table 3 and the assigned widths for the hex side assets are

given in Table 4.

Due to the sheer number of hex assets, the display screen will at times appear clut-

tered. Because of this, and the fact that the game players may not be interested in certain

assets from time to time, the user interface was designed to allow the players to customize

the terrain display. The user can select exactly which terrain features are displayed at any

time.

The player indicates his choices by clicking on toggle buttons in a "Terrain Display

Options" window that is activated from the main menu bar. Figure 22 shows the design of

this window. Any time the user changes the toggle values and exits via the "OK" button,

the hexboard is redrawn to reflect the updated values.

57

Railroad - -

Figure 20. Saber Radial Assets

4.2.3.3 Help. The Motif widget set provides a variety of methods for pre-

senting help to the user. One of the simplest involves putting a status/help bar at the

bottom of the applications window. This method allows for a single line of text to be

displayed at any time. Unfortunately, this method also takes away a portion of the screen

that could be used for other purposes.

A second method is through the use of information dialogue boxes. These widgets can

be made to appear when the user clicks on a "HELP" button or menu item. For example,

Figure 23 illustrates a help screen for the "Terrain Display Options" board described in the

previous section. The information dialog boxes can be customized to provide additional

levels of help simply by adding a button to the bottom of the dialog box that displays

additional or more detailed help.

58

One half of therie

O e half of the rie

Figure 21. Saber River Segment

4.2.3.4 Weather. The hexes for the Saber wargame are organized into a

number of weather zones. In general, all of the hexes in a single weather zone will be

adjacent to each other forming a contiguous ares of the map. The weather zones and the

hexes that they contain are read in from the database fiat files. Each weather zone has a

single type of weather which can be good (GD), fair (FAIR), or poor (POOR).

Representing the weather on the hexboard presented an interesting challenge. Darrell

Quick used a weather overlay to represent weather zones for the Theater War Exercise[44].

He used different patterns and colors to represent each type of weather. While this method

met the requirements for the simulation, it had the drawback of obscuring the underlying

playing surface. The design for the Saber user interface had to overcome this problem.

The solution to the problem was found in the A FWC hex widget. The procedure

59

Table 3. Radial Asset Widths

[Radial Assets
Asset Type I Width (in pixels)

Road 7
Railroad 5
Pipeline 3

Table 4. Hex Side Asset Widths

THe] Side Assets
Asset Type S idth (in pixels)

FEBA 7
Country Border 5
Air Hex Border 4

River 3

HXSetHexBackground is used to specify the background color of each hex. When calling

this procedure, the hex widget allows for the specification of a stipple. Douglas Young

defines a stipple as "a repeating pattern produced by using a bitmap (a pixmap of depth

one) as a mask in the drawing operation"[63:211). The hex widget uses the stipple pattern

to determine the color of each pixel for the hex background. Instead of drawing the hex

background as a solid color, the hex widget only colors the pixels that correspond to bits

set to one in the stipple pattern.

The background color used with the stipple pattern can either be the original back-

ground color of the hex or the original background color can be temporarily replaced with

a new color that is unique to the type of weather. Using a new color, together with the

stipple pattern gives the user two visual clues about the type of weather in a particular hex.

However, if the stipple patters are distinctive enough, retaining the original background

color is possible. The benefit to this approach is that the game player does not lose any

information while the weather is being displayed.

While the Air Force Wargaming Center uses a stipple pattern to shade the Korean

60

Figure 22. Terrain Display Options Bulletin Board

Demilitarized Zone in some warrame scenarios, this seemed like a logical way to represent

the weather for the Saber user interface as well.

The decision of when to display the weather is up to the game players. The users

may display and remove the weather display through the Visibility pull-down menu on the

main menu bar.

4.2.3.5 Airbases, Land Units, and Aircraft Missions. The detailed designs of

the airbase, land unit, and aircraft mission objects are all very similar. Each of these objects

has the same general methods, but with somewhat different implementations. Treating the

objects as separate classes makes it possible to satisfy the special requirements of each class.

Also, the internal representation of the objects can be later modified, if necessary, with

minimum impact to the other object classes. What sets the objects apart is the information

stored, and the method and time of creation.

While airbases, land units, and aircraft missions each contain methods for updating

61

Figure 23. Sample Help Screen

and displaying their status, the actual information maintained and the format in which

it is displayed varies significantly. Also, land units and aircraft missions can move during

animation, whereas airbases cannot. Another distinction between the units concerns the

longevity of the objects. Land units and airbases are relatively long lived in that they

will have status information saved at the end of each game day unless they are completely

destroyed. Thus, these objects can be created by reading the database flat files produced

at the end of each day. Aircraft missions, on the other hand, typically do not exist for

more than one or two days. The majority of the aircraft packages are created, fly their

mission, and return to their bases with one game day. For this reason, most of the aircraft

mission objects are not created until the animation is activated. The data used to create

these missions is retrieved from the history file as the animation progresses as opposed to

the flat files used for the land units and airbases.

One thing that is consistent among the objects is the representation of the objects on

the display screen. Airbases and aircraft missions can each be represented by a particular

graphical symbol. However, the specific symbols used to represent land units depends

on the type and size of the unit. Army FM 101-5-1 provides a comprehensive list of the

standard symbols used to represent ground forces [12]. Another thing that the objects

have in common is that they are identified by a name. Because of size constraints, the

length of the text string for the name should be held to under nine characters.

62

Figure 24. Sample Saber Airbase Representation

As was previously discussed, the hex widget allows child widgets to be assigned to

each hex. Thus, the units are created as two pushbutton widgets arranged vertically in a

Motif form widget[17]. The symbol for the unit is drawn on the top pushbutton using a

pixmap read in from a file. The bottom pushbutton contains the name of the unit. Figure

24 provides an example of the widgets used to represent Taegu Airbase.

If more than one unit is located in a hex, the form widgets will be stacked on top of

each other and only the top unit will be visible. Clicking on the unit symbol pushbutton

will rotate the top unit to the bottom of the stack so that the next unit becomes visible.

Clicking on the name pushbutton will open a window to display the status of the unit.

The format and contents of the status window depends on whether the unit is an airbase,

land unit, or aircraft mission.

63

4.2.3.6 Zoom and Pan Features. The user of a wargame often needs to view

the hexboard at different levels of detail. Sometimes a high level view of the entire theater

is needed. Other times, the game player may want to focus in on a particular area of the

map. When the display is zoomed in, the player also needs to be able to pan horizontally

and vertically in order to view different parts of the map.

The pan feature is easily accomplished by displaying the main hexboard inside of a

Motif scrolled window widget. The scrolled window allows for horizontal and vertical scroll

bars to be placed on two sides of the window. These scroll bars can then be used to pan

across the display.

The zoom feature, on the other hand, can be accomplished in various ways. One

method used by the Air Force Wargaming Center is to create two hexboards. One of the

hexboards is larger than the other and is the primary window for displaying terrain features

and unit symbols. The other hexboard is drawn using much smaller hexes. This theater

overview map (or mini hexboard) shows the entire theater of conflict. A rectangular box

is drawn on the theater map corresponding to the section of the map that is visible in the

larger, primary window. The user can click the mouse while the sprite is in the theater

map to move the rectangular box and correspondingly change the area of the map that is

visible in the primary window. The Saber user interface was designed to use this feature

to keep it consistent with the AFWC simulations.

The Saber user interface was also designed to provide a magnification cap.b~ility.

The user can increase or decrease the magnification of the hexboard by selecting the Zoom

item on the main menu bar. The key to the magnification process is in the creation of the

hexboard.

When the hexboard is created, one of the parameters to be specified is the hex radius.

The hex radius is the distance, in number of pixels, from the center of a hex to a corner

point. An increase (or decrease) in magnification can be accomplished by creating a new

hexboard with a larger (or smaller) hex radius.

4.2.3.7 Color. The assignment of colors to the various drawn objects is a

matter of personal taste. While the colors can be chosen by the application programmer,

64

Table 5. Main Hexboard Customizable Objects

Red Airbase Foreground Red Ground Unit Foreground
Red Airbase Background Red Ground Unit Background
Blue Airbase Foreground Blue Ground Unit Foreground
Blue Airbase Background Blue Ground Unit Background
Red Unit Name Background Hex Outline
Ocean Stacking Dot
River Excellent Hex Trafficability
Stream Very Good Hex Trafficability
Road Good Hex Trafficability
Highway Fair Hex Trafficability
Oil Pipeline Poor Hex Trafficability
Water Pipeline Very Poor Hex Trafficability
FEBA Coast
Country Border City

Table 6. Theater Map Customizable Objects

Neutral Territory Airbase
Red Territory Red Ground Unit
Blue Territory Blue Ground Unit
Ocean Stacking Dot
Hex Outline Location Box

convention dictates that the end user should be allowed to decide the colors for the various

objects. The application programmer typically specifies default colors which the user can

override. One way the user can do this is through entries in the .Xdefaults file in the user's

root directory.

The user may customize the colors for the main hexboard objects listed in Table 5.

Similarly, Table 6 lists the objects that can be customized on the theater map (mini

hexboard).

4.2.3.8 Animation. The animation portion Saber user interface allows the

game players to see how the previous day's battle unfolded. They can see how their mission

orders were carried out in addition to the enemy's response.

65

The animation process begins with the game player specifying the starting day and

time. The hexboard is erased and the map is redrawn to reflect the location and status

of the forces at the specified day and time. The battle then commences. Land units may

be seen moving from hex to hex as they carry out their orders. Aircraft packages appear

on the screen as they are formed. Depending on their mission, the aircraft packages may

move across the map in an effort to retch their target. The aircraft packages are removed

from the screen at the conclusion of their missions or sooner if the package is destroyed by

the enemy.

When an airbase, land unit, or aircraft package is attacked, the hex where they are

located momentarily changes color. This enables the game players to visually see any

trends or patterns of attack. For example, the enemy may send numerous strike missions

against a group of friendly land units to weaken the line of defense in preparation for a

major offensive. This type of information may be helpful in planning future missions.

The user has the same controls over the display when animation is active as he did

before the animation started. This includes changing the visible terrain features and units,

viewing or printing reports, and panning across the display. In addition, the user may

bring up the status of any friendly unit. The status information that is displayed changes

as necessary when the unit receives or inflicts damage.

Once the animation has started, the user is provided additional controls to pause,

resume or quit the animation. If the user quits the animation, the map display reverts back

to what it looked like before the animation was begun. If the animation stops because all

events were replayed, then the display should already be in the same state as it was before

the animation was started.

The database flat files produced at the end of the simulation provide a snapshot of

the units and the end of the game day or cycle. This information is useful for a static

display of the battlefield. However, the function of the animation routines is to show

how the units arrived at their current condition and location. To provide this capability,

information is needed about the events which took place between the end of one day and

the end of the next.

66

A history file was developed to fill this information gap. The simulation creates this

file by recording information about all significant events in the order in which the events

occurred. The entries in the history file file contain all the necessary information to show

when and where units moved or were attacked as well as the amount of attrition they

suffered.

Deciding what events are significant enough to be included in the history file depends

on what is to be displayed and how it is to be represented. For the Saber wargame, an

event is significant if:

* it causes a change of system or object status and if the game players need to be aware

of the new status, or

* it is needed to calculate statistical summaries for the report generator.

Frequently, a significant event will involve two objects. An example is when unit A

attacks unit B. This event could be reported as "Unit A Attacks Unit B," "Unit B Was

Attacked By Unit A," or both ways. Reporting an event twice places an unwanted and

unnecessary burden on the simulation. Therefore, only one entry is made for such events.

The question remains as to which of the first two methods is better. The object-oriented

paradigm suggests that a system be defined as objects and the operations to be performed

on the objects. Thus, the events are designed with objects being the recipient or target

of some action. The example above would then be recorded as "Unit B Was Attacked By

Unit A."

The entries in the history file are divided into event records and status records. Each

event record contains such information as the time, the asset identification of the major

object, the type of the event, and the hex where the action occurred. Some event records

may have additional information specific to the type of event.

Event records are followed by zero, one or more status records. The format and

content of the status records depend on the type of event record. When the status of a

unit changes, the only things that must be written to the history file are the new values for

the changed attributes. However, this approach has a significant drawback. Namely, the

67

simulation would have to perform numerous checks to determine exactly which attributes

changed values in order to write them to the history file. To relieve the simulation of this

processing, the status records contain fields for the values of all required attributes. The

simulation is expected to output a value for each field, even if the values are unchanged.

This may result in a greater number of output commands being executed in the simulation,

but no checks are needed to determine which values changed. A complete description of

the history file is provided in Appendix B.

The overall algorithm for the animation feature is as follows. When the user requests

to start animation, a new window is opened and the user is prompted for the requested

starting day and time. The default values for these fields are the beginning of the previous

day. The end of day information for the day before the requested start day is retrieved

into new instances of the appropriate objects and the hexboard is redrawn. For example,

if the current day is day 3, and the user requests to see a replay of day 2, then new land

unit objects will be created to hold the status of the land units that were saved at the end

of day 1.

If the requested start time is other than the beginning of the day, then the hexboard

cannot be redrawn right away. Instead, the entries in the history file are read and processed

until entries for the requested start time are encountered. No screen updates are issued

until entries with the requested start time are found.

The entries in the history file are then sequentially read. Each event record is decoded

to determine the object and the action to be performed on the object. Depending on the

event type, the status records may also need to be processed. Processing new status values

involves a call to the appropriate status update method for the object. Processing of some

events requires that the screen be updated. For example, movement events require that the

widgets for the unit be erased (unmanaged) at the present location and redrawn (managed)

at the destination hex. If a unit is attacked, the background color of the hex where the

attack took place is temporarilly changed.

The processing of history file events continues until the end of file is reached, the

user pauses the animation, or the user quits the animation.

68

4.2.3.9 Summary Reports. The detailed design of the report generator for

the Saber wargame was driven by the requirements specified in section 4.1.1.2. One of the

requirements for the wargame stated that the user must have the capability to view and

print reports at any time. However, because of the file input and output that takes place,

report creation is a relatively slow process. This led to the following design considerations:

* Regardless of the number of times the user views or prints a report, each report

should be created only once.

* The user should not have to wait for reports to be created when viewing or printing

reports.

The solution to these issues rested on the fact that the Saber wargame is non-

interactive. After analysis of the current situation, the game participants enter their mis-

sion input assignments for the next game day (or portion thereof). The players then go

away while the simulation is run. When the participants return, the process is repeated.

All of the information needed to generate the Saber reports is available at the end of

the simulation run. The required data is either in the database flat files or in the history

file produced for the animation portion of the game. Thus, there is no reason for the user

interface itself to create the reports.

Instead, a report preprocessor is run at the end of the simulation to produce all of

the Saber reports. The report preprocessor outputs each report into a Unix file suitable

for printing. If the participants have specified a subset of reports to be printed each day,

then the report preprocessor sends the appropriate files to the printer.

The Saber user interface allows the user to view or print any of the previously pro-

duced reports by selecting the Reports pulldown menu from the main menu bar. If the

player wants to print a report, the user interface queues the file for printing as is done in

the report preprocessor.

Viewing reports also involves the use of the preprocessor generated report files. OSF

Motif allows for file to be read into text widgets and drawing area widgets for viewing

and/or modification. The ability to modify the file contents can easily be removcd from

69

the widgets. The text and drawing area widgets also support scroll bars if the file does not

fit inside of the window.

4.3 Summary

This chapter presented the system requirements for the Saber wargame. The require-

ments were gathered primarily through the use of system prototypes and group discusc:ons.

The system requirements were followed by a high level design and presentation of how the

Saber application fits in with the Ada bindings to the X Window System. Lastly, detailed

design issues were presented for the major objects, and features. The next chapter presents

the implementation of the wargame.

70

V. Saber Wargame Implementation

This chapter describes the process of implementing the Saber user interface. It begins

with a discussion of the usefulness of the various Ada bindings. This is followed by the pros

and cons of using the Motif User Interface Language. The chapter ends with a discussion

of the specific implementation decisions made during the course of the project.

5.1 Ada Bindings

Three sets of Ada bindings were used to interface with the X Window System and

the Air Force Wargaming Center's (AFWC) hex widget. This section first describes the

implementation of the Ada bindings to the hex widget. It then describes the benefits and

drawbacks of using the Ada bindings written by the Boeing Corporation and the Science

Applications International Corporation (SAIC).

5.1.1 Hex Widget Bindings. In order to use the AFWC hex widget, a set of Ada

bindings had to be developed. The Ada bindings were modeled after the bindings Boeing

developed to the Motif widget set. Each procedure exported by the hex widget had to

have a corresponding Ada procedure. To aid in understanding, the Ada procedure names

were given the same names as their C counterparts except that underscores were inserted

between words. Thus, the C procedure "HxSetHexLabel" became "Hx.Set-Hex.Label".

The complete binding for this procedure is shown in Figure 25.

As can be seen from the figure, the Ada procedure was implemented with another

prccedure nested inside of it. The outei procedure is the one called by the application

program. Thus, the application program should declare variables of the appropriate type to

pass into the procedure. The inner procedure is what is actually bound to the corresponding

C procedure. In order to distinguish it to the compiler, it is given the same name as the

outer procedure except that all underscores are removed. It should be noted that the inner

procedure has no body in the Ada code. Its body is actually the C procedure.

The actual binding was accomplished using the Ada pragma interface and pragma

interface-name constructs. In the figure, the pragma interface construct indicates that the

71

procedure HX..Set-.Hex-.Label(Hex-Widget : in WIDGET;
Hex-.X :in AFS..LARGE-.NATURAL;
Hex-.Y :in AFS-.LARGE-.NATURAL;
Label :in STRING;
Redraw :in BOOLEAN) is

procedure HXSetHexLabel(Hex-.Widget :in SYSTEM.ADDRESS;
Hex-.X : in AFS-LARGE-.NATURAL;
Hex-.Y : in AFS-.LARGE-.NATURAL;
Label : in SYSTEM.ADDRESS;
Redraw :in AFS-.LARGE.NATURAL)

pragma INTERFACE (C, HXSetHexLabel);
= -- pragma INTERFACE-.NAME (HXSetHexLabel, "-.HX.SetHexLabell");

Temp-.Label :constant STRING :Label &ASCII.NUL;

begin

HXSetHexLabel(Widget-.To..Addr(Hex-.Widget)
Hex..X,
Hex..Y,
Temp-.Label(1) address,
BOOLEAN'pos(Redraw))

end HX..Set..Hex.Label;

Figure 25. Ada Binding to Hx-SetflexLabel

72

Table 7. Parameter Conversion Rules

Outer Procedure J Inner Procedure
Parameter Type Mode Parameter Type Method of Type Conversion

Widget in System.Address XT.WidgetTo.Addr(variable-name)a
out XT.AddrToWidget(variable-name)

AFSLarge-Naturalb in AFSLarge-Natural none
(integer > 0) out System.Address variable.name'address

String in System.Address variable-name(1)'address
out

Boolean in AFSLargeNatural Boolean'pos(variable-name)
out System.Address local-variable-name'address

'XT is an abbreviation of the Boeing package "X.TOOLKITJNTRINSICSOSF"
bThis type is defined in the Boeing package "AFS.BASICTYPES"

inner procedure is to be bound to a procedure written in the language C. The name of the

Ada procedure is then paired with the name of the corresponding C procedure through

the pragma interface-name construct.

The primary purpose of the body of the outer procedure is to convert the Ada input

parameters to the types needed by the inner procedure for transfer to the C subroutine.

However, the challenge in developing the bindings was determining exactly what types

of parameters should be passed to the C procedures. Table 7 was developed to assist in

this determination for some of the major data types. Given the type and mode of the

parameter in the outer procedure, the table lists the type for the variable in the inner

procedure. It also shows how the type conversion should be accomplished in the body of

the outer procedure.

In general, if a variable in the outer procedure has a mode of "out", then the cor-

responding variable in the inner procedure must be of type "System.Address". This is

because the C procedure must have the address of the variable if it is going to set or

change the value. One other important point is illustrated in Figure 25. In C, all strings

must be terminated by an ASCII null character. Ada strings, however, typically do not

end with this character. Thus, before sending the string address to the C subroutine, the

Ada bindings append an ASCII null.

73

5.1.2 Boeing Bindings. The bindings written for the Xt Intrinsics and Motif

widget set proved to be an indispensable part of the Saber user interface. While there

were some weaknesses noted in the software, as a whole the Boeing bindings were able to

directly or indirectly satisfy the requirements for the user interface.

5.1.2.1 Weaknesses. The Boeing bindings are not totally perfect. The first

problem one notices when looking at the software is the lack of documentation. For the

most part, the only documentation is in the form of section titles which separate the

subroutines into topical categories. Thus, it would help if the application programmer is

already familiar with the Xt Intrinsics and Motif widget set before trying to use the Boeing

bindings. Furthermore, a few of the subroutines do not have nice, clean bindings to their

corresponding C routines. These Ada subroutines use sparsely documented data structures

that are defined within the bindings and that have no counterpart in the C code. It takes

some time to learn what these data structures are for and how to use them properly.

The second weakness is that the bindings do not cover every Motif and Xt Intrinsics

function. This fact is made clear in a "README" file that comes with the software. Some

of the "missing" procedures can be added without too much difficulty. For example, it

approximately took 15 minutes to add the Xt-tror procedure. Other functions require a

little more thought. An example is the Xt.CloseDisplay procedure. The straightforward

implementation for this procedure was unsuccessful. However, a solution was found by

developing a XtQuiLXRequest exception that is raised when the user wants to quit the

application. A modification was then made to the Xt.MainLoop to break out of the infinite

loop when this exception is raised.

The third drawback to using the Boeing bindings is that they are currently tied to

the Verdix Ada Development System (VADS) version 5.5 or higher. The bindings make use

of the "CStrings", "AStrings", and "Command.Line" packages provided with the VADS

library. The use of these packages restricts the portability of the application software. The

"README" file included with the Boeing bindings indicates which modules would have

to be changed to port the software to machines with different Ada compilers. However,

the required changes should not be attempted by the novice Ada programmer.

74

5.1.2.2 Hardware Dependencies. Even if your system does have VADS ver-

sion 5.5 or higher, there is no guarantee that the Boeing bindings will work correctly. This

fact was determined the hard way when attempting to use the bindings on a Sun 386i ma-

chine running VADS version 5.7 with Unix. In order to gain familiarity with Motif and the

Boeing bindings, a simple test program was written. The program created a pushbutton

widget and registered a callback procedure to change the text string on the pushbutton

when it was pressed. However, the program aborted with a "Segmentation Fault" when

it was executed. Analysis of the code showed that it was syntactically and semantically

correct.

A week later, it was determined that there were two problems, neither of which were

caused by the Boeing bindings or the test program. The causes of the problems were found

in the August, 1991 edition of the VADS Connection. According to the Verdix Corpora-

tion, there are three potential problems areas to be aware of when writing programs that

interface with C. These are parameter passing conventions, register usage, and parallelism.

In this case, it was the first two areas that were causing the test program to abort.

The Verdix Corporation described the parameter passing conventions as follows[59:8]:

In many cases, C does not use the same parameter passing conventions as Ada.
When calling C from Ada this is not a problem, because VADS automatically
generates a C calling sequence whenever pragma INTERFACE is used. When
calling Ada from C, however, there can be a problem. Verdix has implemented
pragma EXTERNAL, which will cause an Ada subprogram to accept a C calling
sequence, but this is only available in version 6.0.5 and above.

The problem encountered with register usage had to do with differences in the ways

Ada and C use registers. According to the Verdix Corporation[59:81:

For the 386...C expects the call to save and restore any registers it modifies,
other than eax. Ada expects the caller to do the saving. This works fine when
Ada calls C, but screws things up when C calls Ada. These register saves must
be done manually, through the use of machine-code insertions.

75

At first glance, it did not appear that these issues would be causing the problems.

It was obvious that Ada was making calls to C through the Boeing bindings, but it was

not readily apparent that C was making any calls back to Ada. However, C was making

calls to Ada inside of the Xt-MainLoop procedure. Specifically, after the pushbutton is

pressed, the C procedure XtDispatchEve.t eventually causes control to be passed back to

the Ada callback procedure that was registered with the pushbutton. It was at this point

that the abovementioned problems caused the "Segmentation Fault".

However, it should be stressed that this was not a problem with the Boeing bindings.

Rather, it is inherent in the way callback procedures are dispatched. The test program

and the Boeing bindings worked correctly when the software was executed on a Sun Sparc

Station 2.

5.1.2.3 Strengths. The weaknesses of the Boeing bindings are outweighed by

its strengths. For example, the bindings were found to be very well written. No errors or

problems were found with any of the Boeing written subprograms used in the Saber user

interface. Furthermore, while there were a few exceptions, most of the Ada subprograms

bear a close resemblance to their C counterparts. Thus, anyone familiar with the calling

sequences for the Xt Intrinsics and the Motif widget set should be able to understand the

functionality of Ada programs that use the Boeing bindings.

5.1.3 SAIC Bindings. The SAIC bindings were needed for the creation of the

pixmaps used in the Saber user interface. Pixmaps were used to display the symbols for

the airbases, ground units, and aircraft missions. The SAIC code provided bindings to Xlib

routines for reading the bitmap data from files. Then the bindings were used to convert the

data into the pixmap data structure needed to make the symbol appear on the pushbutton

widgets. With one exception, the SAIC bindings performed correctly.

The problem involved reading the bitmap data from the files. The data files were

created by the BITMAPeditor provided with the X Window System software. This simple

drawing program allows an application programmer to interactively create bitmap patterns.

76

The pattern is saved in a special format that can be read in by an application program

through calls to appropriate Xlib subroutines.

The BITMAPprogram outputs the bitmap data in groups of two hexadecimal digits.

Thus, each of theses two digit numbers is in the range 0.. FF (or, in decimal, 0 . . 25.5).

However, the SAIC bindings read each two digit number into an eight bit data structure

called "Bit-Data" that can only handle numbers in the range -21.. 2 -1 (or, -128.. 127).

This means that any hexadecimal number greater than 7F is considered out of range.

Two solutions to this problem were considered. The first, which was deemed im-

practical, involved changing the hexadecimal data produced by BITMAP to the decimal

equivalents, while maintaining the same binary representation. To make the decimal num-

bers fit in the proper range, each decimal number greater than 127 must be subtracted by

256. For example,

old number: F8 16 = 24810 = 111110002

new number : 24 810 - 25610 = -81o = 111110002

The solution that was implemented, however, was much easier. According to the

documentation, the SAIC programmers made a previous attempt to correct this problem.

In doing so, they changed the range of permissible values and constrained the size of the

data structure to only eight bits. The solution to the problem, then, involved changing the

range of permissible values back to 0 . . 255. Testing showed that this change solved the

problem without creating new ones.

5.1.4 Combining the Boeing and SAIC Bindings. As was previously mentioned,

both the Boeing bindings and the SAIC bindings were used in the development of the

Saber user interface. The Boeing bindings were the primary means of interfacing with

the X Window System, while the SAIC bindings were used primarily for the creation of

the pixmaps for the unit symbols. Making the few calls to the SAIC bindings was not

straightforward because of inconsistent types used by the two sets of bindings. Somc

77

inconsistencies were resolved by simple type conversion while others required the addition

of new subroutines to the software.

5.1.4.1 Type Conversions. By necessity, the Boeing software contains Ada

declarations of a few low-level Xlib routines. These declarations for such things as the X

Window System display, windows, and drawables were needed because the Xt Intrinsics

provides functions to return these values that are created when the connection with the X

server is established and windows are displayed on the screen.

Several of the SAIC procedures used to create the unit symbol pixmaps required

these values as parameters. Two methods were used to convert the values to the types

needed by the SAIC code. The first was a simple type conversion as in the following

example that converts a float number to an integer:

integer-number : integer(float-number);

The second method used unchecked conversion, a predefined generic function pro-

vided as part of the Ada language. This generic function had to be instantiated with a

source type and a target type for each conversion to be performed. An example instan-

tiation to convert a variable of type "Display-Pointer" returned by Boeing's XtDisplay

function to a variable of type "Display" for use in the SAIC routines follows:

function DisplayIdFromXt.Display is new Unchecked-Conversion

(Source => XLIB.DisplayPointer,

Target => XWindows.Display);

The unchecked conversion utility allows a sequence of bits, an address in the above

example, to be treated as a variable of two different types. However, this capability should

be used with caution. As Cohen writes, "Abuse of this capability can subvert the elaborate

consistency-checking mechanisms built into the Ada language and lead to improper internal

representations for data[11:804]. For the Saber user interface, however, this was the only

way to pass certain variables created through the Boeing bindings as input parameters to

the SAIC subroutines.

78

5.1.4.2 Problems With SAIC Data Structures. Since the initial connection

with the X server was made through the Xt Intrinsics via the Boeing bindings, and not

through the SAIC code, several internal SAIC data structures were not initialized. Because

these data structures were not initialized, some functions provided by the SAIC bindings

could not be used.

Two of the functions that fell into this category were DefaultDepth and Root- Win-

dow. The results returned by these functions were needed for the creation of the unit

symbol pixmaps. To obtain these values, a binding was created for each function and

added to the Boeing bindings. Before the values could be used by the SAIC subroutines,

however, they had to be converted to the corresponding SAIC types. The value returned

by Root.Window was converted using the unchecked conversion described in the previous

section, while the value returned by DefaulLDepth was converted through simple type

conversion.

5.2 Using the Motif User Interface Language

The Open Software Foundation (OSF) provides a User Interface Language (UIL) and

Motif Resource Manager (MRM) as part of the basic OSF/Motif environment. The UIL

is a specification language for describing the appearance and behavior of Motif objects for

a user interface. Through the UIL, the applications programmer can specify the widgets

to be used and the callback functions to be entered when the user interface changes state

as a result of user actions.

To use the interface specifications, the UIL file must first be compiled to produce a

User Interface Definition (UID) file. Typically, compilation of the UIL file takes much less

time than compilation of the application file. In the application program, MRM functions

are called to initialize the connection with the UID file. Additional MRM functions are

used to access the interface definitions and cause the Motif objects to appear on the screen.

Following is a discussion of the advantages and disadvantagez 3f using the UIL and

MRM to create a user interface.

79

5.2.1 Advantages of UIL and MRM. The Open Software Foundation lists the

following benefits of creating a Motif based user interface using UIL and MRM[40:III-1-2]:

* Easier Coding. You can specify an interface faster using UIL because you
do not have to know specific widget creation functions or the format of
their argument lists.

* Earlier Error Detection. The UIL compiler does the type checking for you
that is not available with the Motif or X Toolkits, so that the interface
you specify has fewer errors.

e Separation of Form and Function. When you use UIL, you define your
application interface in a separate UIL module rather than by directly
calling Motif Toolkit creation functions in your application program.

* Faster Prototype Development. You can create a variety of interfaces in a
fairly short time, and get an idea of the look of each interface before the
functional routines are written.

* Interface Customization. You can customize an interface by putting in
place a hierarchy of UID files (called a UID hierarchy). At run time,
MRM searches this file hierarchy in the sequence you specify to build the
appropriate argument lists for the widget creation functions.

Another advantage is the capability to fine tune the layout of the user interface. For

example, UIL makes it easy to adjust the placement and margins of various pushbuttons

inside of a bulletin board widget. Because recompilation of the UIL file is so fast, various

combinations can be tried until the interface meets the programmer's satisfaction.

5.2.2 Drawbacks. There are several significant disadvantages to using UIL and

MRM in the implementation of a user interface. These include portability problems, the

overhead of numerous procedure calls, and problems with implementing an object-oriented

design.

The first, and perhaps most significant, drawback is that OSF does not guarantee that

the UIL and MRM functions will be upward compatible with future releases of Motif. While

the OSF1Moif Programmer's Guide praises UIL and MRM, another OSF publication does

not.

OSF has published a four volume collection of books referred to as the Application

Environment Specification (AES). The AES was designed to list the specifications for

80

programming user interfaces, such that applications using only the included items would

be guaranteed to operate consistently on a wide variety of hardware platforms[39]. In order

to be included in the AES, the interface elements must be stable (i.e., not likely to change)

and reliable.

Unfortunately, the UIL and MRM were excluded from the Motif AES. The User

Environment volume of the AES lists the following rationale for its exclusion[39:1-16]:

Preliminary feedback from builders of interactive design tools and user interface
management systems indicates that as is, uil (sic) does not completely support
their needs. While we hope that future changes will be upward compatible,
this cannot be guaranteed at this time.

This is not an idle threat. During the development of the Saber user interface, two

UIL items were found to be incompatible between Motif releases 1.0 and 1.1. The first

involved the callback reason XmNcreateCallback. With release 1.1, this callback was no

longer supported. The name of the callback had changed to MrmNcreateCallback. The

second problem with UIL involved the scrolled window widget. The UIL component of

release 1.0 generated horizontal and vertical scroll bars by default. However, the scroll

bars must be explicitly requested with the later version.

The second disadvantage to using UIL and MRM deals with the extra overhead

involved in numerous procedure calls. To begin with, several calls are needed just to

establish a connection with the UID file. Once the connection is established, many more

subroutine calls are needed whenever the application program needs to know the widget

ids of UIL created widgets. Since the widgets are created through the UIL and not in

the application program, the widget ids must be passed to the application software by

specifying a MrmNcreateCallback for each needed widget. Thus, for a bulletin board

widget with twelve toggle buttons, twelve separate callbacks are needed whenever the

bulletin board is created. Once the application program has the twelve widget ids, another

twelve procedure calls are needed to set the initial state of the toggle buttons.

A third disadvantage of using UIL and MRM relates to the implementation of an

object-oriented design. For the Saber user interface, several bulletin board widgets with

81

multiple toggle buttons were needed. Using UIL, the exact physical layout and behavior

of each bulletin board must be specified in advance. This includes specifying such things

as the main title, instructions, names for each toggle button, and callback procedures.

Since we have several bulletin board widgets with similar properties, the object-

oriented approach suggests creating a "Toggle Button Board" class that is instantiated

whenever a list of user customizable settings is to be displayed. Objects are instantiated

with the specific titles, instructions, callbacks, and a list of toggle buttons. The initial

settings for the toggle buttons can be specified in advance, before the buttons are created.

Also, the widget ids are saved as each toggle button is created in the application program,

thus reducing the number of procedure calls, while at the same time, resulting in more

of an object-oriented implementation. Unfortunately, the UIL approach does not support

this paradigm.

5.2.3 Suggested Uses of the UIL. Even with its disadvantages, the UIL can, and

should, still be used as part of user interface development. Specifically, the UIL is a

geod tool for rapid prototyping, interface design, specifying widget hierarchies, and fine

tuniig of user interface objects. However, the UIL specifications should be translated into

the appropriate Motif subroutine calls so that the widgets are created in the application

program. The application program will then be more portable and more efficient. At the

same time, it will be a better implementation of an object-oriented design.

5.3 User Interface Implementation

The following sections describe some of the more significant issued faced during the

implementation of the Saber user interface. First, a general description is presented of the

packages used to implement the objects and controlling routines. Since a description of

the objects is given in Chapter 4 and Appendix A, this section focuses on the controlling

packages. This description is followed by a more detailed summary of the animation

controller package. Lastly, a description is given of changes that were made to the Air

Force Wargaming Center's hex widget.

82

i -Game Player

Train o~r

' Anknalon Aircraft Mission ! Day End I

-Controller Controller

Figure 26. Saber Module Diagram

5.3.1 Ada Package Implementation. Figure 26 shows the Ada package implemen-

tation of the Saber user interface using a variant of Booch's method[7]. In this figure,

packages at the heads of the arrows depend on the packages at the tails of the arrows. In

other words, a package at the head of an arrow must "WITI" the package at the tail. A

package was developed for each object class shown in Figure 15. Each package contains

subroutines for the creation and manipulation of individual instances of the object.

The controlling functions of the Saber user interface are handled in the main proce-

dure and in three controlling packages. The MainProcedure of Figure 26 creates the start

up form then enters the XLMainLoop to process the X events. The three controller pack-

ages instantiate the objects and contain the callback procedures for all menu and button

press events. The Main-Controller instantiates objects that are shared by the DayEnd_

83

Controller and the Animation-Controller. These objects include the toggle button boards,

menubars, and hexboards. These objects will exist whether animation is active or the user

is viewing the end of day unit positions.

The objects instantiated by the subordinate controllers are mutually exclusive of

each other. While objects may be instantiated in both controllers at the same time, only

one controller will have control over the hexboards at a time. In other words, only one

controllef will be displaying its objects on the screen at a time. The objects instantiated

by the subordinate controllers include terrain features, ground units, airbases, and aircraft

packages. The Day-EndController instantiates static objects that represent the state of

the simulation at the end of a day's action. The Animation-Controller, on the other hand,

instantiates objects from a previous day. The attributes of the Animation-Controller's

objects change as the animation is run. It should be noted that the day end instantiations

are held unchanged even if animation is started. This makes it faster to redisplay the end

of day positions if the animation is aborted before reaching the end of the history file.

5.3.2 Animation-Controller. This subcontroller performs all actions associated

with recreating the battle engagements of previous days. It allows the game players to

visually see the results of their employment decisions. The information needed to perform

the animation is acquired from both the database flat files and the history file. The

database flat files are used to instantiate objects reflecting the status of the battlefield at

the start of the animation period. The entries in the history file are then read in sequential

order to update the status and location of the forces.

The requirement that most significantly impacted the implementation of the Ani-

mationController was that the user should have the capability to perform all the same

functions that they could before the animation was started. Once begun, the main portion

of the animation process consists of entering a loop to read and process all of the events

in the history file. However, if the user is to be able to perform other functions while the

animation is active, some means was necessary to occasionally stop reading the history file

in order to process the user requests. To accomodate this requirement, the Animation-

Controller was implemented as an Ada task inside of a package. Instead of procedures, the

84

task has entry points that are called by the Main-Controller. The general outline of the

task is shown in Figure 27.

The task does nothing until the user requests to start the animation by clicking on the

appropriate pulldown menu item on the main menubar. To begin the animation, the Main

Controller calls the Start-Animation entry point to establish an Ada rendezvous. During

this rendezvous, the initial terrain, ground unit and airbase objects are instantiated and

displayed on the screen.

After creation of the objects, the task enters a loop where entry calls are accepted

and history file processing takes place. If there are no waiting entry calls and the animation

is not paused, then an event from the history file is read and piocessed. Otherwise, the

waiting entry call is accepted and a rendezvous takes place. If more than one entry call is

waiting, the Ada language dictates that one will be arbitrarily selected for acceptance.

The entry calls that will be accepted are shown in Figure 27. Two of the entry points

are for redisplaying terrain and units after the user indicated that the visibility of certain

objects should be altered. Another two entry points handle requests to display or remove

weather overlays and hex status windows.

The Fill-InTheater-Map entry adds the graphical representations of the objects to

the theater map. The StopAnimation entry will cause a permanent halt of the animation.

The history file is closed and the user is presented with a small window that allows him

to reset the display to the end of day positions. The PauseAnimation entry causes a

temporary halt of the animation. The history file remains open, but unread, until the

animation is either permanently halted or resumed.

When the animation is active, there is always the chance that the AnimationCon-

troller task and the main program may both try to execute an Xlib, Xt Intrinsics or Motif

function at the same time or shortly after one another. If the first call gets blocked before

the function completes, the second call could arbitrarily manipulate data structures or

memory locations still needed by the first call.

One way to prevent this from happening is to use a monitor to protect the data

structures from concurrent update by two or more tasks. For this project, however, the

85

loop
select

accept Start.Animation
<set User.WantsToContinue to TRUE>

while User.WantsToContinue loop
select

accept RedisplayTerrain
or

accept RedisplayUnits
or

accept Weather.DisplayToggleChanged
or

accept ShowHex.Info
or

accept FillIn.TheaterMap
or

accept Suspend.Window.Operations
accept ResumeWindowOperations

or
accept Pause.Animation

<set User.IsPausing to TRUE>
or

when UserIs.Pausing =>
accept Resume-Animation

<set UserIsPausing to FALSE>
or

accept Stop.Animation
<set UserWants.ToContinue to FALSE>
<set UserIsPausing to FALSE>

else
if not UserIs.Pausing and not EndOfHistoryFile then

<Read And Process History File>
end if

end select
end loop

or Terminato

end select
end loop

Figure 27. Outline of Animation Controller Task

86

use of monitors w is not realistic because of the numerous functions and data structures

provided by the X Window System.

Instead, an entry was added to the Animation-Controller to momemtarily suspend

the animation process whenever the Main-Controller needs to execute an X Window System

function. Suspending the Animation-Controller prevents it from executing a simultaneous

request. The Main-Controller then allows the Animation-Controller to resunle processing

after the X Window System function completes execution. Because of the nature of the Ada

accept statements, if the Animation-Controller is itself performing w~adow operations when

the Main-Controller requests the suspension, the Main-Controller will have to wait until

the window operations are completed. At that ;ime the Animation-Contioller will accept

the call. It is important to note that the DayEndController has no need to synchronize

wih , the Animation-Controller in this manner because its procedures will not be executed

while the animation is active.

Another significant issue with the Animation-Controller concerned how the task en-

tries should be ca'ed. Some entries are only called by the MainControllier. For others,

the most efficient way is to have the task entry act like a callback procedure. To do so,

the address ofthe entry must be specified when registering callbacks. Unfortunately, Ada

will not allow the address attribute to be applied to task entry names directly. A solution

to this problem was to introduce a level of indirection by making all callbacks go to the

Main-Controller which can then make a normal task entry call.

5.3.3 Changes to the Hex Widget. The hex widget developed by the Air Force

Wargaming Center (AFWC) provided the means for drawing the hexboard and terrain

features. For the most part, the hex widget is well written and easy to use. Furthermore,

the addition of new routines for drawing railroads, pipelines, and various hexside assets

was fairly straightforward. Two changes were made to the hex widget to correct and error

in erasing assets and to decrease the time it takes to redraw the hexboard.

The hex widget treats each hex as an individnal object and keeps the terrain features

for each hex in its own internal data. structures. These internal data structures are used

to actually display the terrain features on the hexboard. Terrain features are added to

87

the hexes by repetitive calls to the appropriate hex widget procedures. These procedures

create a graphics context for each added feature. A graphics context is an Xlib data

structure that specifies such things as the foreground and background colors to be used

when drawing objects on the screen. When adding radial or hexside assets to a hex, a

separate call must be made for each side of the hex that is to receive the asset. Thus, if a

road enters a hex from the north side and exits to the south side, two calls must be made

to the hex widget. One call draws a road from the center of the hex to the north side, and

the other from the center to the south side. The hexboard is not drawn on the screen, or

"realized", until all terrain assets have been added to the hexboard.

To remove a terrain feature from a hex, the hex widget's internal data structure

must be changed. Removal of a city from a hex is accomplished by adding a city with

a radius of zero. Th:s overwrites the old city value. Similarly, radial and hexside assets

are removed by adding the particular feature with a width of zero. Because the DayEnd.

Controller maintains the original set of terrain features, the asset data is not lost. The

terrain features can be easily festored to the hexes.

The first attempt at removing a terrain feature revealed an error in the hex widget.

A road segment wa.s removed from a hex by setting its width to zero. However, when the

hex was redrawn, there was still a road segment one pixel wide. The problem was with

the test performed by the hex widget to determine if the road segment should be drawn.

The hex widget checked to see if a gr lphics context existed. Since the graphics context

was never deleted, the road segment ,s redrawn.

A simple fix to the problem would have been to delete the graphics context when

adding a road with a width of zero. However, doing so would mean that the graphics

context would have to be recreated if the user chose to display roads again. Thus, the

solution was not implemented in this manner. Instead, the test to determine which assets

should be drawn was changed to check to see if the road segment had a width of zero.

The other change made to tblo AFWC's hex widget reduced the time it takes to redraw

the terrain features on the hexboard. As terrain objects are added to the hexboard, the

hex widget checks to see if the hexboard has been realized, or displayed on the screen. If it

88

has not, as is the case when ivitially creating the hexboard, the hexes are not drawn until

after the last terrain feature has been added. However, if the hexboard is currently being

displayed on the screen, then a hex is redrawn every time a terrain feature is added to or

removed from it. Thus, if a hex has a three road segments in it and the user has requested

that roads be removed from the hexboard, then the hex will be redrawn three times; once

after removing each segment.

To elinminate this unnecessary redrawing of the hexes, a parameter was added to

each procedure that adds features to hexes. The parameter is a boolean flag that indicates

whether the hex should be redrawn after the terrain asset is added to the hex.

5.4 Summary

This chapter described the significant issues of the Saber user interface implementa-

tion. A description was given of how bindings were developed for the AFWC hex widget.

This was followed by the benefits and drawbacks of the Boeing and SAIC bindings. While

the bindings generally performed well, some modifications were necessary to correct minor

deficiencies. Next, the pros and cons of the Motif User Interface Language (UIL) were

given. The UIL can be used as an effective prototyping tool. However, because of upgrade

problems, the UIL should not be used as part of the final Lser interface. The chapter ended

with a description of the packages used to implement the object-oriented design. The im-

plementation of the animation routines as entry points in an Ada task ws described in

some detail.

The next chapter summarizes the entire thesis effort and gives recommendations for

future expansions to the user interface.

89

VL Conclusions and Recommendations

This chapter summarizes the work performed for this thesis. It then pre!sents some

recommendations for further work to be performed on the user interface.

6.1 Summary

This thesis effort resulted in the development of an animated graphical user interface

for the Saber wargame. It provides a post-game look at the status of forces and allows

the game player to graphically see how the battle has progressed through the movement

of unit icons around the battlefield. The work to generate this project was accomplished

using an iterative approach. The major actions performed were:

Analysis of the problem domain. Before doing any design or implementation, an

intensive study was accomplished to gain an understanding of the terms, concepts,

and philosophies needed to design a user interface for a wargame. This involved

research in the areas of wargames, user interface design, and the X Window System.

Determination of system requirements. A series of screen and report prototypes

were developed to gain a better understanding of the requirements for the user in-

terface. Other requirements were gathered through group discussions and through

examination of similar wargames in various stages of development.

* Development of the high-level design. Having laid the foundation through the accom-

plishment of the previous two steps, the next task was the high-level, object-oriented

design of the user interface. This involved the identification of the objects, their at-

tributes, and the communication needed between them. At this point, several alter-

natives of how to incorporat the X Window System into the design were considered.

The decision was made to access the Xlib routines through the SAIC produced bind-

ings and access the Xt Intrinsics and Motif widget set using the bindings produced

by Boeing.

9 Iterative generation of code. The software was generated through a repetitive process

of evaluation and planning, detailed design, code generation, and unit and regression

90

F
testing. This method ensured that a working product was available at the end of

each iterati-on.

The efforts just described resulted in a user interface that is both portable and

extensible. By using the X Window Systenm to develop the user interface, the software is

guaranteed to execute on a number of hardware platforms. However, because of the use of

the Boeing bindings, the development of the system is restricted to systems using certain

versions of the Verdix Ada Development System (VADS). The use of the Motif widget

set provides a standard look and feel so that users familiar with other applications using

the snme widget set will have less of a problem becoming productive on the Saber user

interface. The use of the object-oriented paradigm should also make it easy to expand the

capabilities of the interface. The ianctionality of each object is encapsulated into individual

procedures to isolate the impact of changes to the system.

6.2 Recommendations

This development effort proved that the Ada programming ,..nguage can be i'sed

to g&.nerate graphical user interfaces for wargames. While the Saber user interface is a

good beginning, there were certain features that could not be implemented due to time

constraints. Also, the implementation process revealed other features and capabilities that

can be achieved using the Motif widget set. Thus, the following ideas are provided as areas

of potential enhancement:

a Three di, ?.,nsional representation of iiu battlefield. The Xl1R5 release of the X Win-

dow Syste" includes PEX, a PH'GS/+ extension to X that allows for the generation

o' three dimensional images. While some work may be necessary to interface the

Ada language to this new release, it would open up maay raore possibilities for the

user interface.

* Improved intelligence reporting. The intelligence portion of the user interface could

be improved through the use of shadow records to provide the status and location

of enemy forces based on the latest intelligence data. The shadow records would be

used to report information to t'., user while its actual information would be stored

91

elsewhere. As more intelligence is gathered for a particular unit, the information in

the shadow record would be updated. Another improvement would be to provide

predictions of enemy action based on the gathered intelligence data.

9 The use of the Motif paned window widget. The Motif widget set provides a paned

window widget which allows multiple widgets to be placed in vertical "panes". An

optional "sash" can be used to separate the child widgets. The user can adjust the

size of each individu.l pane using a control box on the sash. There are a couple of

potential uses for the paned widget in the Saber user interface. One use would be

to display different portions of the map in different panes. Another use would be to

show the end of day positions in one pane and run the animation in another.

* The use of gadgets instead of widgets Creating widgets causes new windows to be

generated on the display. Each wind,w uses up both application and X Window

server resources. Also, creating numerous windows tends to slow down an applica-

tion. To alleviate these problems, Motif provides things called gadgets which are

basically windowless widgets. Gadgets are available for many of the commonly used

widgets such as push buttons, toggle buttons, and separators. They perform many

of the same functions as their widget counterparts, but consume fewer resources and

can be created faster. According to Young, gadgets cannot support event handlers,

translations, or popup children, although they do support callback functions[63].

Thus, an area of impocwement would be to determine where the widgets could be

replaced with gadgets in the Saber user interface.

* Development of file naming conventions for the database files. The animation portion

of the Saber user interface requires the capability to read the database flat files for

any previous day. Thus, some naming convention is necessary to distinguish the files

for day one from the files for day two, three, etc.

9 Expansion of "help" features. The Saber user interface was developed using single

page help screens. This capability should bu expanded to provide multiple levels of

help for each topic.

92

* Addition of "hot keys" for the experienced user. The user interface presently al-

lows the game player to step through the menu items using the keyboard or mouse.

Mnemonics are provided that allow the user to easily select a menu item without

stepping down to a particular choice. However, many experienced users may prefer

not to use the menu system at all. The Motif widget set offers a solution to this

problem by allowing "hot keys" to be set up for the menu items. A hot key is a

programmer specified key combination such as "Alt-A" or "Control-Q" that can be

used to perform a specific function without going through the various menus. The

Saber user interface should be expanded to provide this capability.

Design and implementation of a scenario development tool. This tool should provide

the wargame staff the capability to develop a wargame for any part of the world. It

should allow for the initial placement of ground units, and airbases anywhere on the

globe. It should also allow for the addition of supplies and equipment to any of the

air or ground units.

6.3 Conclusions

In conclusion, this thesis documented the design, rationale, and implementation of

the Saber user interface. It showed how the Ada programming language could be success-

fully used to develop an object-oriented user interface using the X Window System, the

Xt Intrinsics and the Motif widget set. This work forms the baseline for future efforts at

completing an integrated Ada wargame that can help teach air and ground employment

doctrine to the future leaders of the United States Air Force and its allies.

93

Appendix A. Saber Class Descriptions

This appendix describes the application and Motif classes which make up the Saber
user interface. The classes are designed to be generic enough to be implemented in any
programming language. The attributes and methods are described for each class.

A.1 Application Classes

A.1.1 Game Player Class. This class contains information about the person play-
ing the game. The methods collect and return this information.

A.1.1.1 Attribute Types

SeminarNumberType: string for the seminar number of the class
CurrentDayType: integer representing the current day relative to the start of the battle
Player.SideType: indicates whether the player is on the RED, BLUE, or WHITE team

A.1.1.2 Methods. These are the methods for the Game Player class. The
purpose, input parameters, and output parameters are given for each method.

Fetch.StartUpForm

* Purpose: generates the start up form to retrieve player information
* Inputs: addresses of "CONTINUE" and "QUIT" callback procedures

* Outputs: widget id of the start up form

Is-Red

9 Purpose: function that returns true if player side is RED

* Inputs: none

* Outputs: none

Is-Blue

* Purpose: function that returns true if player side is BLUE

o Inputs: none

o Outputs: none

Is-White

* Purpose: function that returns true if player side is WIIITE

o Inputs: none

o Outputs: none

94

GetSeminar-Number

* Purpose: function that returns the seminar number

e Inputs: none

* Outputs: none

Get-CurrentDay

e Purpose: function that returns the current day

* Inputs: none

* Outputs: none

Set-JserValues

e Purpose: procedure that extracts and saves the values for the Seminar Number,
Current Day, and Player side from the widgets.

* Inputs: none

e Outputs: none

A.1.2 Terrain Class. Objects of this class contain information about the terrain
covering the hexboard. The methods read and display the terrain information.

A.1.2.1 Attribute Types

Hex.Range: Variables of this type are integers between 0 and 99.

Neighbor.Range: Variables of this type are integers between 1 and 9999.

Hex.ArrayType: Variables of this type are arrays of asset information for the hexes. The
asset information includes center hex id, sides of the hex that form part of air hex
borders, force, country, weather zone, weather, intel index, combat power in, combat
power out, terrain type, amount of forestation, pie trafficablility for each hex side,
hex sides containing roads, railroads, and pipelines.

NeighborArrayType: Variables of this type are arrays, indexed by neighbor id, that
contain the two hexes and their hex sides that are neighbors.

River.Segment.Pointer: This is a pointer to a list of neighbor id's and river sizes that
form the rivers.

Obstacle-Pointer: This is a pointer to a list of hexside obstacles. The following informa-
tion is kept for each obstacle: obstacle id, neighbor id, name, and visibility to BLUE
and RED forces.

City-Pointer: This is a pointer to a list of cities. The following information is kept for
each city: name, hex location, size, population, and whether or not it is a capital.

NeighborList-Pointer: Variables of this type are pointers to a linked list of neighbor id's.
This type is used for FEBA and country border lists.

95

Terrain.ObjectType: This is the type for the Terrain object and is instantiated through
a call to Read-Terrain-Data. Variables of this type contain all terrain information
about a hexboard. This type consists of a consolidation (i.e., record or structure) of
the following variables listed with their corresponding types in parenthesis:

Hex-Array (HexArrayType) Border-List (NeighborListPointer)
Neighbor.Array (Neighbor.ArrayType) FEBAList (NeighborListPointer)
Obstacle.List (Obstacle-List-Pointer) City-List (City-Pointer)
River.Segment-List (RiverSegmentPointer) MaxX (Hex-Range)
Max-Neighbor (Neighbor-Range) Max-Y (Hex-Range)

A.1.2.2 Methods. T' section lists the methods for the Terrain class. The
purpose, input parameters, and output parameters are given for each method.

ReadTerrain..Data

* Purpose: This procedure creates instances of variables of type TerrainObject_
Type by reading the specified database flat files.

Inputs: Filenames for the Hex, Travel, City, Hexside Assets, FEBA, Roads,
Railroads, and Pipelines database relations.

* Outputs: A variable of type TerrainObjectType instantiated with data from
the input files.

Show-Terrain-Data

9 Purpose: This procedure displays all of the terrain data (except the weather)
on the given hexboard subject to the current terrain display toggle buttons.

* Inputs: Hexboard Widget, Terrain Object, Terrain Display Toggle Button
List

* Outputs: none

Show-Weather.Data

* Purpose: This procedure displays the current weather on the given hexboard.

* Inputs: Hexboard Widget, Terrain Object

* Outputs: none

EraseWeatherData

* Purpose: This procedure removes the current weather from the given hexboard.

* Inputs: Hexboard Widget, Terrain Object

* Outputs: none

96

ShowMinefield

* Purpose: This procedure adds a minefield to a specific side of a hex on the given
hexboard. The hex is redrawn if the user is currently displaying minefields.

e Inputs: Hexboard Widget, Terrain Object, Hex X and Y Coordinates, Hex
Side, Terrain Display Toggle Button List

* Outputs: none

EraseMinefield

* Purpose: This procedure removes a single minefield from the given hexboard
and the Terrain data structure.

* Inputs: Hexboard Widget, Terrain Object, Hex X and Y coordinates, Hex
Side

* Outputs: none

Show-Bridge

* Purpose: This procedure adds a bridge to specific sides of two hexes on the
given hexboard. The hex is redrawn if the user is currently displaying bridges.

* Inputs: Hexboard Widget, Terrain Object, Hex X and Y coordinates for each
hex, Hex Sides, Terrain Display Toggle Button List

* Outputs: none

Erase-Bridge

* Purpose: This procedure removes a single bridge from the given hexboard and
the Terrain data structure.

* Inputs: Hexboard Widget, Terrain Object, Hex X and Y coordinates for each
hex, Hex Sides

e Outputs: none

FlashHexBackground

* Purpose: This procedure rapidly changes the background color of a user speci-
fied hexagon to indicate the hex or units in the hex have been attacked.

• Inputs: Hex X and Y coordinates

* Outputs: none

A.1.3 Hexboard Class. Objects of this class are hexboards in which terrain and/or
units can be displayed. The methods create and manipulate the visibil portion of the
hexboard.

97

A.1.3.1 Attribute Types

Game-Board-Type: This is the type for the Game Board (hexboard) object and is instan-
tiated through a call to CreateHezboard. Vaxiables of this type contain the widget
id, width, height of the hexboard as well as the current X, Y, W, H locations. Addi-
tionally, they contain the graphics context for the location box and an indication of
weather or not the first exposure of the hexboard has occurred.

HexboardClientDataType: This is the type for the client data to be passed to hexboard
callback procedures. It consists of GameBoardType instantiations for the main
hexboard and the theater map. It also contains the widget id of the scrolled window
widget containing the main hexboard.

A.1.3.2 Methods. This section lists the methods for the Hexboard class.
The purpose, input parameters, and output parameters are given for each method.

Createi-exboard

* Purpose: This function creates a hexboard of the specified size and with the
specified options.

@ Inputs: Parent, Name, Background Color, Hex Outline Color, Stacking Dot
Color, number of hexes in the X and Y directions, Hex Radius, and whether or
not to display Hex Labels

* Outputs: an instantiated object of type Game.BoardType

SetGCLocation-Box

* Purpose: This procedure sets the graphics context for the location box. The
location box is drawn in the theater map and shows the portion of the theater
that is being displayed in the main hexboard

* Inputs: Theater Map, X Windows Display, X Windows Drawable, Location
Box Color

* Outputs: none

Theater.Map.ButtonPress

• Purpose: This procedure adjusts the visible portion of the main hexboard as a
result of the user pressing the mouse button while the sprite is inside the theater
map.

a Inputs: Hexboard Client Data

• Outputs: none

98

Draw.LocationBox

* Purpose: This procedure draws the location box in the theater map.

* Inputs: Hexboard Client Data

* Outputs: none

SetTheaterMapActive

* Purpose: This procedure sets a flag to indicate that the theater map is being
displayed.

e Inputs: none

* Outputs: none

Theater__MapIs.Active

* Purpose: This function returns "true" if the theater map is being displayed.
Otherwise, it returns "false".

* Inputs: none

* Outputs: boolean value indicating if theater map is currently being displayed

A.1.4 Ground Unit Class. Objects of this class contain information about the
ground units covering the hexboard. The methods read and display the ground units and
their status.

A.1.4-.1 Attribute Types

GroundUnitPointer: This is a pointer to a list of ground units. The following informa-
tion is kept for each ground unit:

" Static Information: unit designator, unit type, country, force, corps id, sup-
ported units, supporting units

" Status Informat;on: mission, target number, combat power, firepower, surface-
to-air index, total ammunition, total hardware, total petroleum-oil-lubricants
(POL), amount of water, amount of engineer support, intel index, visible to
enemy indicator, weather, hex location

" Widget Information: widget id of the form, symbol, and label widgets in addi-
tion to the widget id for the status window.

A.1.4.2 Methods. This section lists the methods for the Ground Unit class.
The purpose, input parameters, and output parameters are given for each method.

99

SetGCGroundSymbols

* Purpose: This procedure sets the graphics context for the ground unit symbols.

* Inputs: X Windows Display, X Windows Drawable, Red Foreground and
Background Colors, Blue Foreground and Background Colors

* Outputs: none

Initialize-GroundSymbols

e Purpose: This procedure creates the pixmaps for the Red and Blue ground unit
symbols.

e Inputs: Display Id

9 Outputs: none

Read-GroundUnitData

* Purpose: This procedure creates instances of type GroundUnit.Pointer by read-
ing the specified database fiat files.

* Inputs: Filenames for the Land Unit, Unit Supports, Move, Move LNLT, Unit
Components, and Unit G2A database relations.

* Outputs: Two variables of type GroundUnitPointer that point to a list of
ground units. One pointer is returned for the Red units and one for the Blue
units.

GetGround-Unit

e Purpose: This function returns a pointer to a specific ground unit's information.

* Inputs: Ground Unit List, Unit Id

* Outputs: pointer to the ground unit with the specified Unit Id

Show-AllGround-Units

* Purpose: This procedure displays all the ground units (for a particular side) on
the map.

e Inputs: Main Hexboard, Theater Map, Ground Unit List for a particular side
(force)

9 Outputs: none

100

Erase-AIlGroundUnits

* Purpose: This procedure erases all the ground units (for a particular side) from
the map.

* Inputs: Main Hexboard, Theater Map, Ground Unit List for a particular side
(force)

* Outputs: none

Erase.SingleGroundUnit

e Purpose: This procedure erases a single ground unit from the map.

* Inputs: Main Hexboard, Theater Map, Ground Unit Pointer ')r a particular
unit

* Outputs: none

MoveGroundUnit

* Purpose: This procedure moves a single ground unit on the map.

s Inputs: Main Hexboard, Theater Map, Ground Unit Pointer for a particular
unit

* Outputs: the Ground Unit Pointer with new location information

Show-UnitStatus

e Purpose: This procedure opens a status window for a particular ground unit.

* Inputs: Main Hexboard, Ground Unit Pointer for a particular unit

• Outputs: the Ground Unit Pointer with the widget d of the status window
added

Erase-UnitStatus

Purpose: This procedure closes a status window for a particular ground unit.

* Inputs: Main Hexboard, Ground Unit Pointer for a particular unit

• Outputs: the Ground Unit Pointer with the widget id of the status window
removed

UpdateUnit.Status

* Purpose: This procedure updates the status for a particular ground unit. If the
unit is currently displaying its status, the status window is also updated.

* Inputs: Main Hexboard, Ground Unit Pointer for a particular unit, new Status
Information

* Outputs: the Ground Unit Pointer with updated Status Information

101

Is.Displaying-Status

* Purpose: This function returns an indication of whether a particular unit has a
status window open.

* Inputs: Ground Unit Pointer for a particular unit

* Outputs: "true" if the ground unit has an open status window, "false" otherwise

A.1.5 Aircraft Mission Class. Objects of this class contain information about the
aircraft missions covering the hexboard. The methods display the aircraft missions and
their status.

A.1.5.1 Attribute Types

Aircraft.MissionPointer: This is a pointer to a list of aircraft missions. The following
information is kept for each aircraft mission:

* Static Information: aircraft package number, mission, target, requested time on
target, altitude, hex level

" Aircraft Information: hex location, the starting number, current number, and
types of aircraft flying as Primary, Suppression of Enemy Air Defense (SEAD),
Electronic Counter Measures (ECM), Refueling, and Escort aircraft.

" Widget Information: widget id of the form, symbol, and label widgets in addi-
tion to the widget id for the status window.

A.1.5.2 Methods. This section lists the methods for the Aircraft Mission
class. The purpose, input parameters, and output parameters are given for each method.

SetGC.AircraftSymbols

* Purpose: This procedure sets the graphics context for the aircraft mission sym-
bols.

" Inputs: X Windows Display, X Windows Drawable, Red Foreground and
Background Colors, Blue Foreground and Background Colors

* Outputs: none

Initialize.Aircraft.Symbols

" Purpose: This procedure creates the pixmaps for the Red and Blue aircraft
mission symbols.

* Inputs: Display Id

" Outputs: alone

102

Add.Aircraft.Mission

" Purpose: This procedure adds an instance of type AircraftMissionPointer to
the Aircraft Mission List.

" Inputs: Static Information, Aircraft Information, Aircraft Mission List, Main
Hexboard, Tbeater Map, an indication to draw the mission on the game boards.

" Outputs: Aircraft Mission List with the new mission added

GetAircraft.Mission

* Purpose: This function returns a pointer to a specific aircraft mission's infor-
mation.

* Inputs: Aircraft Mission List, *M4;ssion Id

e Outputs: pointer to the aircraft mssion with the specified Mission Id

ShowAllAircraft.Missins

* Purpose: This procedure displays all the aircraft missions (for a particular side)
on the map.

e Inputs: Main Hexboard, Theater Map, Aircraft Mission List for a particular
side (force)

* Outputs: none

EraseAllAircraftMissions

* Purpose: This procedure erases all the aircraft missions (for a particular side)
from the map.

* Inputs: Main Hexboard, Theater Map, Aircraft Mission List for a particular
side (force)

@ Outputs: none

EraseSingleAircraft.Mission

* Purpose: This procedure erases a single aircraft mission from the map. It also
removes the mission from the list of aircraft missions.

* Inputs: Main Hexboard, Theater Map, Aircraft Mission Pointer for a partic-
ular unit

* Outputs: none

103

Move.Aircraft.Mission

* Purpose: This procedure moves a single aircraft mission on the map.

* Inputs: Main Hexboard, Theater Map, Aircraft Mission Pointer for a partic-
ular unit an indication to draw the mission on the game boards.

e Outputs: the Aircraft Mission Pointer with ncv location information

ShowMission.Status

* Purpose: This procedure opens a status window for a particular aircraft mission.

* Inputs: Main .Lexboard, Aircraft Mission Pointer for a particular unit

e Outp,'tE. the Aircraft Mission Pointer with the widget id of the status window
added

Erase-Mission.Stat:is

" Purpose: This procedure closes a status window for a particular aircraft mission.

" Inputs: Main Hexboard, Aircraft Mission Pointer for a particular unit

" Outputs: the Aircraft Mission Pointer with the widget id of the status window
removed

UpdateMission.Status

* Purpose: This procedure updates the status for a particular aircraft mission. If
the unit is currently displaying its status, the status window is also updated.

" Inputs: Main Hexboard, Aircraft Mission Pointer for a particular unit, new
Status Information

* Outputs: the Aircraft Mission Pointer with updated Status Infoimation

IsDisplaying.Status

" Purpose: This function returns an indication of whether a pai L;cular unit has a
status window open.

* Inputs: Aircraft Mission Pointer for a particular unit

" Outputs: "true" if the aircraft mission has an open status window, "false"
otherwise

A.1.6 Airbase Class. Objects of this class contain information about the aircraft
bases covering the hexboard. The methods read and display the aircraft bases and their
status.

104

A.1.6.1 Attribute Types

AirbasePointer: This is a pointer to a list of aircraft bases. The following information is
kept for each aircraft base:

@ Static Information: base id, name, command, country, force, higher headquar-
ters, total POL storage, maximum ramp space

* Status Information: ramp space available, alternate fields, intel index, number
of enemy mines, status, MOPP posture, POL on base, POL in hard storage,
maintenance personnel on hand, maintenance hours accumulated, amount of
maintenance equipment, amount of 3pare parts, number of shelters, number of
EOD crews, number of rapid runway repair (RRR) crews, an indicator of the
base's visibility to the enemy, and the weather

* Widget Information: widget id of the form, symbol, and label widgets in addi-
tion to the widget id for the status window.

A.1.6.2 Methods. This section lists the methods for the Airbase class. The
purpose, input parameters, and output parameters are given for each method.

InitializeAirbaseSymbols

" Purpose: This procedure creates the pixmaps for the Red and Blue airbase
symbols.

* Inputs: Display Id, Red foreground and background colors, Blue foreground
and background colors.

* Outputs: none

ReadAirbase.Data

o Purpose: This procedure creates instances of type AirbasePointer by reading
the specified database flat files.

• Inputs: Filenames for the Airbase, Depot, Runways, Alternate Bases, Airbase
Aircraft, Airbase Weapons, and Weather database relations

* Outputs: Two variables of type AirbasePointer that point to a list of airbases.
One pointer is returned for the Red bases and one for the Blue bases.

GetAirbase

* Purpose: This function returns a pointer to a specific aircraft base's information.

* Inputs: Airbase List, Base Id

* Outputs: pointer to the aircraft base with the specified Base Id

105

ShowAll.Airbases

9 Purpose: This procedure displays all the aircraft bases (for a particular side)
on the map.

* Inputs: Main Hexboard, Theater Map, Airbase List for a particular side
(force)

* Outputs: none

Erase-All.Airbases

" Purpose: This procedure erases all the aircraft bases (for a particular side) from
the map.

" Inputs: Main Hexboard, Theater Map, Airbase List for a particular side
(force)

" Outputs: none

Erase.Single-Airbase

* Purpose: This procedure erases a single aircraft base from the map. It also
removes the base from the list of aircraft bases.

* Inputs: Main Hexboard, Theater Map, Airbase Pointer for a particular unit

* Outputs: none

ShowAirbase-Status

* Purpose: This procedure opens a status window for a particular aircraft base.

" Inputs: Main Hexboard, Airbase Pointer for a particular unit

" Outputs: the Aircraft Base Pointer with the widget id of the status window
added

EraseAirbaseStatus

* Purpose: This procedure closes a status window for a particular aircraft base.

• Inputs: Main Hexboard, Airbase Pointer for a particular unit

* Outputs: the Aircraft Base Pointer with the widget id of the status window
removed

Update.Airbase.Status

* Purpose: This procedure updates the status for a particular aircraft base. If
the unit is currently displaying its status, the status window is also updated.

* Inputs: Main Hexboard, Airbase Pointer for a particular unit, new Status
Information

* Outputs: the Aircraft Base Pointer with updated Status Information

106

IsDisplayingStatus

* Purpose: This function returns an indication of whether a particular airbase
has a status window open.

* Inpuis: Airbase Pointer for a particular unit

* Outputs: "true" if the aircraft base has an open status window, "false" otherwise

A.1.7 Report Class. Objects of this class contain status information about ground
units, aircraft missions, and airbases. The methods display and print the various reports.

A.1.7.1 Attribute Types

Report-Pointer: This is a pointer to a list of report names.

A.1.7.2 Methods. This section lists the methods for the Report class. The
purpose, input parameters, and output parameters are given for each method.

Display-OptionsMenu

* Purpose: This procedure displays the main report options menu.

9 Inputs: none

* Outputs: none

View-Report

* Purpose: This procedure opens a window in which a report is displayed.

* Inputs: Report Name to display

• Outputs: none

Print.Report

* Purpose: This function sends a list of reports to a printer.

* Inputs: Report List

* Outputs: none

SelectStandard.Set

" Purpose: This function allows the user to select a standard set of reports for
daily printing.

* Inputs: none

* Outputs: Report List

107

A.2 Motif Classes

A.2.1 Toggle Button Board Class. Objects of this class are bulletin board widgets
that contain various toggle buttons for various custom settings. The methods create and
manipulate the toggle button boards. print the various reports.

A.2.1.1 Attribute Types

Button-Record: This is a collection of information about a toggle button. It includes
such information as: the button name, widget id, current value, new value, and a
value changed callback address.

Button-List: This is a pointer to a list of button records.

A.2.1.2 Methods. This section lists the methods for the Toggle Button Board
class. The purpose, input parameters, and output parameters are given for each method.

MakeButtonList

* Purpose: This procedure creates an empty Button List.

* Inputs: none

* Outputs: pointer to an empty Button List

ClearButtonList

* Purpose: This procedure empties a Button List so it can be reused.

e Inputs: Button List

9 Outputs: Button List

Set-Button

* Purpose: This procedure adds information for a new button to the specified
Button List

" Inputs: Button List, Button Record information

* Outputs: Button List with new Button Record added

CreateToggleButtonBoard

* Purpose: This procedure creates a bulletin board for a set of toggle buttons.

* Inputs: Button List, Board Title, Instructions, OK Callback Address, CAN-
CEL Callback Address, HELP Callback address

* Outputs: none

108

ToggleButtonValueChanged

" Purpose: This procedure handles XmNvalueChanged callbacks. It records the
new value of a toggle button.

" Inputs: Button List

" Outputs: Button List with new value

ResetToggleValues

* Purpose: This procedure resets the values for the toggle buttons back to the
state they were in before the toggle button bulletin board was created.

* Inputs: Button List

* Outputs: Button List with values reset to their initial state

SetNewToggleValues

" Purpose: This procedure sets the new values for the toggle buttons to the state
they were in when the user closed the toggle button bulletin board.

* Inputs: Button List

* Outputs: Button List with values set to their new state.

A.2.2 Menubar Class. Objects of this class are menubar widgets that contain
various pulldown menus. The methods create the menubar and allow for the addition of
pulldown menus and the items on the pulldown menus.

A.2.2.1 Attribute Types

none

A.2.2.2 Methods. This section lists the methods for the Menubar class. The
purpose, input parameters, and output parameters are given for each method.

Create.Menubar

" Purpose: This function creates a mepubar with a help pulldown menu on the far
right side. Other pulldown menus can be added through the Grcatc.Pulldowl_
Menu procedure.

" Inputs: Parent Widget, Help Message

" Outputs: widget id of menubar

109

Create-Pulldown-Menu

* Purpose: This function creates a cascade button on the specified menubar and
a pulldown menu to hang off of it.

* Inputs: Parent Menubar Widget, Name On Menubar, Mnemonic, Pulldown
Title

a Outputs: widget id of the pulidown menu

AddPulldown.MenuItem

* Purpose: This function adds a menu item to a pulldown menu. A pushbutton
is created for the menu item with the specified callback.

* Inputs: Pulldown Menu Widget, Item Name, Callback Address

* Outputs: widget id of the newly created pushbutton

110

Appendix B. Saber History File

This appendix describes the entries for the history file. The history file serves two
purposes for the postprocessor. First, it is used in the generation of certain reports where
the information cannot be obtained directly from the files written out by the simulation.
The second function is to provide a script to be used in the animation of the day's action.
The entries in the history file contain the necessary information to show when and where
units moved as well as the amount of attrition they suffered..

To reduce the number of entries in the history file, only events which cause a change
of system (or object) status are recorded. Additionally, whenever possible, each event is
only recorded once. Thus, instead of recording that unit A attacked unit B and that unit
B was attacked by unit A, only one entry will be made. Each event is action oriented in
that an object performs some action or is the target of some action.

The entries in the history file are divided into event records and status records. The
event records the object performed the action, the time the event occurred, and the type
of event. Depending on the type of the event, it may be followed by one or more status
records. These records reflect the new status of the object. The format of the status
records also depends on the type of the event.

The following sections describe the format and contents of the evenm and status
records.

B.1 Events Affecting Aircraft Package Status

List of Events:

MS1) MSNSTRT = Mission Start
MS2) MOVE = Move
MS3) ATKDBY = Attacked By
MS4) JETTSN = Jettison
MS5) MSNCOMP = Mission Complete

B.1.1 MS1 - Mission Start

B.1.1.1 Event Record

Rendez Msn Rqst
E Time AssetId HexId Event Type TOT Force Target

Example:
E 1630 MS000016 HX030225 MSNSTRT OCA 1800 BLUE HX012341

111

B.1.1.2 Status Record: (one for each aircraft type in the aircraft package)

Mon Acft Num Num Rand PMS Wx
S Cat Type Rqstd Avail Abrt Abrt Abrt

Example:
S PRIM FISD 15 13 1 1 1
S ESC F16E 5 5 0 0 0
S REF KC135 1 1 0 0 0

NOTE: The MSNSTRT status records should be followed by Aircraft Departed
(ACDEP) event and status records for each airbase that contributed to the aircraft pack-
age.

B.1.2 MS2- Move

B.1.2.1 Event Record

E Time AssetId New-Hex Event

Example:
E 1645 MS000016 HX030245 MOVE

B.1.3 MS3 - Attacked By

B.1.3.1 Event Record

E Time Asset.Id HexId Event Attacker

Example:
E 1700 MS000016 HX030245 ATKDBY MS000144

NOTE: The attacker field could be an aircraft package or a ground unit.

B.1.3.2 Status Record:

Msn Acft New
S Cat Type Num

Example:
S PRIM F15D 11
S ESC F16E 4
S REF KC135 1

112

B.1.4 MS4 - Jettison

B.1.4.1 Event Record

E Time AssetId Hex.Id Event

Example:

E 1730 MS000016 HX030245 JETTSN

B.1.-42 Status Record: (one for each aircraft type in the aircraft package)

Msn Acft New
S Cat Type Num

Example:
S PRIM FiSD 10
S ESC F16E 0
S REF KC135 0

B.1.5 MS5 - Mission Complete

B.1.5.1 Event Record

E Time Asset.Id HexId Event

Example:
E 1800 MS000016 HX030217 MSNCOMP

NOTE: The MSNCOMP event record should be followed by Aircraft Arrived (ACARR)
event and status records for each airbase that is to receive returning aircraft.

B.2 Events Affecting Atrbase Status

List of Events:

AB1) ATKDBY = Attacked By
AB2) ACDEP = Aircraft Depart
AB3) ACARR = Aircraft Arrive (returning missions or

from staging base)
AB4) SUPARR = Supplies Arrive (from depot)
AB5) INTELD = Was Intelled (via tactical reconnaissance

mission

113

B.2.1 ABi - Attacked By

B.2.1.1 Event Record

E Time AssetId HexId Event Attacker

Example:
E 1630 AB000143 HX010219 ATADBY MSO00017

B.2.1.2 Status Record #1 - Supplies:

Intl Ramp Enmy MOPP POL POL Main Main Main Spar EOD RRR
SI Status Indx Aval Mine Post Soft Hard Pers Hour Eqpt Part Shlt Crew Crew

Example:
S1 ACTIVE 29.2 7500 0 0 2800 1500 150 1750 5000 5000 25 2 2

B.2.1.3 Status Record #2 - Aircraft:

Acft New Acft New Acft New Acft New Acft New Acft New
S2 Type Numb Type Numb Type Numb Type Numb Type Numb Type Numb

Example:
S2 FI5D 32 F16E 22 KC135 7

B.2.-.4 Status Record #3 - Weapons:

New New New New
S3 Weapon-Type Numb Weapon-Type Numb Weapon-Type Numb Weapon-Type N4umb

Example:
S3 AIM9L 155 AIM7 552 GBUIO00 1000

B.2.2 AB2 - Aircraft Depart

B.2.2.1 Event Record

E Time AssetId HexId Event

Example:
E 1730 AB000143 HX010219 ACDEP

114

B.2.2.2 Status Records. Uses the status records S1, S2, S3 for Supplies,
Aircraft, and Weapons.

B.2.3 AB3 - Aircraft Arrive

B.2.3.1 Event Record

E Time Asset.Id Hex.Id Event

Example:
E 1730 ABO00143 HX010219 ACARR

B.2.3.2 Status Records. Uses the status records S1, S2, S3 for Supplies,
Aircraft, and Weapons.

B.2.4 AB4 - Supplies Arrive

B.2.4.1 Event Record

E Time AssetId Hex.Id Event

Example:
E 1730 ABO00143 HX010219 SUPARR

B.2.4.2 Status Records. Uses the status records S1, S2, S3 for Supplies,
Aircraft, and Weapons. All three status records may not be required in every case.

B.2.5 AB5 - Was Intelled

B.2.5.1 Event Record

E Time Asset.Id Hex.Id Event ReccePkg Intel-Index

Example:
E 0900 AB000143 HX010219 INTELD MS000141 43.0

115

B.3 Events Affecting Depot Status

List of Events:

DP1) ATKDBY = Attacked By
DP2) SUPDEP = Supplies Depart
DP3) INTELD = Was Intelled (via tactical reconnaissance

mission

B.3.1 DP1 - Attacked By

B.3.1.1 Event Record

E Time Asset.Id HexId Event Attacker

Example:
E 1700 DP000828 HX010201 ATKDBY MS000017

B.3.1.2 Status Record

Intl MOPP POL POL Spar EOD
S Status Indx Post Soft Hard Part Shlt Crew

Example:
S ACTIVE 9.2 0 2500 1500 5000 25 2

B.3.2 DP2 - Supplies Depart

B.S.2.1 Event Record

E Time Asset.Id Hex.Id Event

Example:
E 1700 DP000828 HXO10201 SUPDEP

116

B.3.2.2 Status Record

Intl MOPP POL POL Spar EOD
S Status Indx Post Soft Hard Part Shit Crew

Example:
S ACTIVE 9.2 0 2200 1300 4000 25 1

Note: A SUPDEP event should be followed by a SUPARR for an airbase or ground
unit.

1.3.3 DP3 - Was Intelled

= 1R.3.3.1 Event Record

E Time Asset-.Id Hex-.Id Event Recce..Pkg Intel-.Index

Example:
E 0900 DP000828 HX010201 INTELD MS000141 43.0

11.4 Events Affecting Ground Unit Status

List of Events:

GRi) MOVE = Move
GR2) ATKDBY = Attacked By
GR3) SUPARR = Supplies Arrived
G114) NEWMSN = New Mission
GR5) INTELD = Was Intelled (via tactical reconnaissance

mission

B-.4.1 GRI - Move

11.4.1.1 Event Record

E Time Asset..Id Hex-.Id Event

Example:
E 1700 LU000443 HX010203 MOVE

117

B.4.2 G22 - Attacked By

B.4.2.1 Event Record

E Time AssetId HexId Event Attacker

Example:
E 1730 LU000443 HX010203 ATKDBY LU001044

B.4.2.2 Status Record

Intl Intl Cbt Fire 1 2 3 4 5 Total Total Total Amt Amt
S Indx Fltr Pwr Pwr SAI SAI SAI SAI SAI Ammo Hrdwr POL H20 Eng

Example:
S 29.2 1.0 14.0 24.0 0 4 4 10 0 2500 3000 2150 1000 250

B.-4.3 GR3 - Supplies Arrive

B.4-.3.1 Event Record

E Time AssetId HexId Event

Example:
E 1800 LU000443 HX010203 SUPARR

B.4.3.2 Status Record

Intl Intl Cbt Fire 1 2 3 4 5 Total Total Total Amt Amt
S Indx Fltr Pwr Pwr SAI SAI SAI SAI SAI Ammo Hrdwr POL H20 Eng

Example:
S 29.2 1.0 14.0 24.0 0 4 4 10 0 3000 3290 2300 1250 250

118

B.4.4 CR4 - New Mission

B.4.4.1 Event Record

E Time Asset..Id Hex..Id Event New-.Msn Target

Example:
E 1830 LU000443 HX010203 NEWMSN DEF HX010203

B-4.5 GR5 - Was Inteled

B.4.5.1 Event Record

E Time Asset..Id Hex..Id Event Recce..Pkg Intelndex

Example:
E 0900 LU000443 HX010203 INTELD MS000141 43.0

B. 5 Events Affecting Satellite Status

List of Events:

STi) LAUNCH = Satellite Launch
ST2) ATKDBY = Attacked By
ST3) MOVE = Move

B. 5.1 STi - Satellite Launch

B.5.1.1 Event Record

E Time Asset..Id Start.Hx Event Sat-ype Orbit-.Type

Example:
E 1700 ST002319 HX014525 LAUNCH PH0T0J-.EC GEOSYNCH

119

B.5.1.2 Status Record

S Tgt.Hex TgtHex Tgt.Hex TgtHex TgtHex TgtHex TgtHex

Example:
S HX014523 HX014524 HX014525 HX014526 HX014527 HX014528

B.5.2 ST2 - Attacked By

B.5.2.1 Event Record

E Time Asset.Id Hex.Id Event Attacker New-Status

Example:
E 1900 ST002319 HX074523 ATKDBY LU000199 INACTIVE

B.5.3 ST3 - Move

B.5.3.1 Event Record

E Time AssetId New-Hex Event

Example:
E 2100 ST002319 HX074525 MOVE

B.5.3.2 Status Record

Intl Intl Cbt Fire 1 2 3 4 5 Total Total Total Amt Amt
S Indx Fltr Pwr Pwr SAI SAI SAI SAI SAI Ammo Hrdwr POL H20 Eng

Example:
S 29.2 1.0 14.0 24.0 0 4 4 10 0 2500 3000 2150 1000 250

120

B. 6 Events Affecting Supply Trains

List of Events:

LG1) LGSTRT = Supply Train Start
LG2) MOVE = Move
LG3) ATKDBY = Attacked By
LG4) LGCOMP = Supply Train Complete

B.6.1 LG1 - Supply Train Start

B.6.1.1 Event Record

Transit
E Time Asset-.Id Star-.Hx Event Mode NumVeh Time

Example:
E 1000 LGO06001 HX010321 LGSTRT TRUCK 30 8

B.6.1.2 Status Record

S Type Amnt Type Amnt Type Amnt Type Amt

Example:
S SPARES 40 POL 32

Note: The LGSTRT event should be followed by a SUPDEP event from a def.t.

B.6.2 LG2 - Move

B.6.2.1 Event Record

E Time Asbet-.Id Now-.Hex Event

Example:
E 1100 LGO06001 HX010322 MOVE

121

B.6.3 LG3 - Attacked By

B. 6.3.1 Event Record

E Time Asset-.Id Hex..Id Event Attacker

Example:
E 1115 LGO06001 HX010322 ATKDBY MS000143

B.6.3.2 Status Record

S NumVeh Type Amt Type mt Type Amt Type Amt

Example:
S 27 SPARES 32 POL 19

B.6.4 LG4 - Supply Train Complete

B.6.4.1 Event Record

E Time Asset..Id New-.Hex Event

Example:
E 2100 LGO06001 HX010329 LGCOMP

Note: The LGCOMP event should be followed by a SUPARR, event for a ground
unit or an airbase.

B. 7 Events Affecting Hex Status

List of Events:

HX1) ATKDBY = Attacked By
HX2) MINED = Mines Laid
HX3) CLRMIN = Clear Mines
HX4) BRIDGE = New Bridge Built
HX5) BR.BLWN = Bridge Blown

122

B.7.1 HX1 - Attacked By

B.7.1.1 Event Record

E Time AssetId Event Attacker

Example:
E 1700 HX010203 ATKDBY MS000143

B.7.2 HX2 - Mines Laid

B.7.2.1 Event Record

E Time AssetId Event Attacker Hex-Side

Example:
E 1700 HXO10307 MINED MS000143 N

B. 7.3 HX3 - Clear Mines

B.7.3.1 Event Record

E Time AssetId Event Attacker Hex-Side

Example:

E 1700 HX010307 CLRMIN MS000143 N

B.7.4 HX4 - New Bridge Built

B.7.4.1 Event Record

E Time AssetId Event Builder Hex-Side

Example:

E 1700 HX010314 BRIDGE LU000521 S

123

B. 7.5 ffX5 - Bridge Blown

B.7.5.1 Event Record

E Time Asset-Id Event Builder Hex-.Side

Examp.Le:
E 1700 HX010314 BRBLWN LU000521 S

B.8 Events Affecting the Weather

List of Events:

WX1) WXCHNG =Weather Change

B.8.1 WX1 - Weather Change

B.8.1.1 Event Record

E Time Event

Example:
E 1700 WXCHNG

B.8.1.2 Status Record

S Wx..Zone New..Wx

Example:
S 1 GOOD
S 2 POOR
S 3 FAIR
S 4 FAIR
S 5 POOR

124

B.9 Example Script

E 1630 MSO00016 HX030225 MSNSTRT OCA 1800 BLUE HX012341
S PRIM F15D 15 13 1 1 0
S ESC F16E 5 5 0 0 0
S REF KC135 1 1 0 0 0
E 1630 AB000143 HX010219 ACDEP
Si ACTIVE 29.2 7500 0 0 2400 1500 150 1750 4900 4900 25 2 2
S2 FISD 32 KC135 7
S3 AIM9L 155 AIM7 552 GBUIO00 1000
E 1630 AB000144 HX010228 ACDEP
S1 ACTIVE 22.1 7300 0 0 2100 1900 120 1900 5000 3000 21 5 7
S2 F16E 21 AIOA 45
S3 AIM9L 130 AIM7 4000
E 1645 MS000016 HX030325 MOVE
E 1700 MS000016 HX030329 MOVE
E 1700 MS000016 HX030229 ATKDBY MS000144
S PRIM Fi5D 11
S ESC F16E 4
S REF KC135 1
E 1730 MS000016 HX030325 MOVE
E 1745 MSOOOO16 HX030225 MOVE
E 1800 MS000016 HX030225 MSNCOMP
E 1800 AB00143 HX010219 ACARR
Si ACTIVE 29.2 7100 0 0 3000 1500 150 1500 4800 4644 25 2 2
S2 FISD 43 KC135 8
E 1800 ABOO0144 HX010228 ACARR
S1 ACTIVE 22.1 6999 0 0 2100 1900 120 1643 3751 2791 21 5 7
S2 F16E 25 AIOA 45
S3 AIM9L 133 AIM7 4000

125

Bibliography

1. Ada Informadon Clearinghouse. Available Ada Bindings. Draft. Lanham, MD, Oc-
tober 1991.

2. Apple Computer, Inc. Human Interface Guidelines. The Apple Desktop Interface.
Technical Report. Reading MA: Addison-Wesley, 1987.

3. Battilega, John A. and others. "Overview." In Hughes, Wayne P., editor, Military
Modeling, Military Operations Research Society, 1984.

4. Biles, William E. and Susan T. Wilson. "Animated Graphics and Computer Simula-
tion." In Proceedings of the 1987 Winter Simulation Conference, pages 472-477, The
Winter Simulation Conference, Atlanta, 1987.

5. Binnie, Michael J. and David L. Martin. "The Role of Animation in Decision-Making."
In Proceedings of the 1988 Winter Simulation Conference, pages 272-276, The Winter
Simulation Conference, San Diego, 1988.

6. Boehm, Barry W. "A Spiral Model of Software Development and Enhancement,"
IEEE Computer, pages 61-72 (May 1988).

7. Booch, Grady. Object-Oriented Design with Applications. Redwood City, CA:
Benjamin-Cummings, 1991.

8. Brunner, Daniel T. and others. "A General Purpose Animator." In Proceedings of the
1989 Winter Simulation Conference, pages 155-163, The Winter Simulation Confer-
ence, Washington D.C., 1989.

9. Cammarata, Stephanie and others. "Dependencies and Graphical Interfaces in
Object-Oriented Simulation Languages." In Proceedings of the 1987 Winter Simu-
lation Conference, pages 507-517, The Winter Simulation Conference, Atlanta, 1987.

10. Chignell, Mark H. and John A. Waterworth. "WIMPS and NERDS: An Extended
View of the User Interface," SIGCIII Bulletin, 23:15-21 (April 1991).

11. Cohen, Norman H. Ada as a Set, nd Language. New York: McGraw-Hill, 1986.

12. Department of the Army. Operational Terms and Symbols. FM 101-5-1. Washington:
HQ USA, 21 October 1985.

13. Dunnigan, James F. How to Make War. New York: William Morrow, 1988.

14. Finn, Richard M. CRES Theater Game Requirements. Technical Report. Maxwell
AFB, Alabama, 1989.

15. Gordon, Peter J. A Graphical Player Interface to the Theater War Exercise. MS the-
sis, AFIT/GCS/ENG/89D-5, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1989.

16. Grudin, Jonathan. "The Case Against User Interface Consistency," Communications
of the ACM, 32:1164-1173 (October 1989).

17. Halloran, Capt Tim J. "Hex Widget." C computer software source code, 1990.

126

18. Hartrum, Thomas C. System Development Documentation Guidelines and Standards,
January 1989.

19. Hodgson, Gordon M. and Stephen R. Ruth. "The Use of Menus in the Design of
On-Line Systems: A Retrospective View," SIGCHI Bulletin, 17:16-22 (July 1985).

20. Horton, Capt Andre M. Design and Implementation of a Graphical User Inter-
face and a Database Management System for the Saber Wargame. MS thesis,
AFIT/GCS/ENG/91D-08, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1991.

21. Hyland, Stephen J. and Mark A. Nelson. "Ada Bindings to the X Window System."
Ada computer software source code, 1987.

22. Interface Standards Informal Technical Data, Ada Interfaces to X Window System.
Software Technology for Adaptable Reliable Systems (STARS) Contract F19628-88-
D-0031, Publication No. GR-7670-1069(NP), Reston VA: Unisys Corporation, March
1989 (AD-A228820).

23. John A. Madden, Lt Col. "Conceptual Design and Development of Joint Service
Wargame, Part I." U.S. Army War College, June 1982.

24. Johnson, Eric F. and Kevin Reichard. X Window Applications Programming. Port-
land: MIS Press, 1989.

25. Johnson, Eric F. and Kevin Reichard. Power Programming ... Motif. Portland: MIS
Press, 1991.

26. Jones, E. J. "Ada Bindings to the Xt Intrinsics and Motif Widget Set." Ada computer
software source code, 1991.

27. Jones, Oliver. Introduction to the X Window System. Englewood Cliffs NJ: Prentice
Hall, 1989.

28. Koivunen, Marja-Ritta and Martii Mantyla. "HutWindows: An Improved Archi-
tecture for a User Interface Management System," IEEE Computer Graphics and
Applications, pages 43-52 (January 1988).

29. Kross, Capt Mark S. Developing New User Interfaces for the Theater War Exercise.
MS thesis, AFIT/GCS/ENG/87-19, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1987 (AD-A189744).

30. Lowgren, Jonas. "History, State and Future of User Interface Management Systems,"
SIGCHI Bulletin, 20:32-44 (July 1988).

31. Mann, Capt William F. III. Saber: A Theater Level Wargame. MS thesis,
AFIT/GOR/ENS/91M-9, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1991 (AD-A238825).

32. Myers, Brad A. "A Taxonomy of Window Manager User Interfaces," IEEE Computer
Graphics and Applications, 8:65-84 (September 1988).

33. Myers, Brad A. Software Design: User Interface Design (2), Video tape number AC-
SD-01-25. Carnegie Mellon University, Software Engineering Institute, 1989.

127

34. Myers, Brad A. Software Design: User Interface Design (1), Video tape number AC-
SD-01-24. Carnegie Mellon University, Software Engineering Institute, 1989.

35. Myers, Brad A. and Mary Beth Rosson. "User Interface Programming Survey,"
SIGCHI Bulletin, 23:27-30 (April 1991).

36. Ness, Capt Marlin A. A New Land Battle for the Theater War Exercise. MS thesis,
AFIT/GE/ENG/90J-01, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, June 1990 (AD-A223087).

37. Nielsen, Jakob. "Coordinating User Interfaces for Consistency," SIGCHI Bulletin,
pages 63-65 (1989).

38. Nye, Adrian and others. Xlib Reference Manual for Version 11, Volume One. Mas-
sachusetts: O'Reilly and Associates, Inc, 1988.

39. Open Software Foundation. Application Environment Specification: User Environ-
ment Volume. Revision A. Englewood Cliffs NJ: Prentice Hall, 1990.

40. Open Software Foundation. OSFIMotif Programmer's Guide. Revision 1.0. Engle-
wood Cliffs NJ: Prentice Hall, 1990.

41. Open Software Foundation. OSF/Motif Style Guide. Revision 1.0. Englewood Cliffs
NJ: Prentice Hall, 1990.

42. Perla, Peter P. The Art of Wargaming. Annapolis MD: Naval Institute Press, 1990.

43. Pountain, Dick. "The X Window System," Byte, 14:353-360 (January 1989).

44. Quick, Darrell. A Graphics Interface for the Theater War Exercise. MS thesis,
AFIT/GCS/ENG/88D-16, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1988 (AD-A205902).

45. Ross, R. Entity Modeling: Techniques and Application. Boston MA: Database Re-
search Group, 1987.

46. Roth, Mark A. "Personal conversations," (January through November 1991).

47. Scheifier, Robert W. and others. X Window System: C Library and Protocol Refer-
ence. Digital Press, 1988.

48. Scheifler, Robert W. and Jim Gettys. "The X Window System," ACM Transactions
on Graphics, 5:79-109 (April 1986).

49. Schneiderman, Ben. Designing the User Interface. Reading MA: Addison-Wesley,
1987.

50. Sheridan, Robert E. "The Script Processing Technique in Modeling/Simulation and
its Role in the Generation of Animated Computer Graphics." In Proceedings of the
1986 Winter Simulation Conference, pages 810-825, The Winter Simulation Confer-
ence, Washington D.C., 1986.

51. Sherry, Capt Christine. Object-Oriented Analysis and Design of the Saber Wargame.
MS thesis, AFIT/GCS/ENG/91D-21, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB 01, December 1991.

128

52. Simon, Major Glenn D. Interactive Graphical Support for a Small- Unit Amphibious
Operatio Combat Model. MS thesis, Naval Postgraduate School, Monterey, CA,
March 1983 (AD-A128561).

53. Smith, Sydney L. and Jane N. Mosier. Guidelines for Designing User Interface Soft-
ware. Contract F19628-86-C-0001, Bedford MA: MITRE Corporation, August 1986
(AD-A177198).

54. Sommerville, Ian. Software Engineering. Massachusetts: Addison-Wesley, 1989.

55. Stevens, Lt Nora G. The Application of Current User Interface Technology to Intcr-
active Wargaming Systems. MS thesis, Naval Postgraduate School, Monterey, CA,
September 1987 (AD-A186856).

56. Szekely, Pedro. "Separating the User Interface from the Functionality of Application
Programs," SIGCHI Bulletin, 18:45-46 (October 1986).

57. Tevis, Jay-Evan J. II. An Ada-Based Framework for an IDEFo CASE Tool Using the X
Window System. MS thesis, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1990 (AD-A189681).

58. Trumbly, James E. and Kirk P. Arnett. "Including a User Interface Management
System (UIMS) in the Performance Relationship Model," SIGCHI Bulletin, 20:56-62
(April 1989).

59. Verdix Corporation. VADS Connection. Technical Report. Chantilly, VA, August
1991.

60. Wallnau, Kurt C. Ada/Xt Architecture: Design Report. Software Technology for
Adaptable Reliable Systems (STARS) Contract F19628-88-D-0031, Publication No.
GR-7670-1107(NP), Reston VA: Unisys Corporation, January 1990 (AD-A228827).

61. Wallnau, Kurt C. and others. Ada/Xt Toolkit, Version Description Document. Soft-
ware Technology for Adaptable Reliable Systems (STARS) Contract F19628-88-D-
0031, Publication No. GR-7670-1133(NP), Reston VA: Unisys Corporation, July 1990
(AD-A229637).

62. Young, Douglas. X Window Systems: Programming and Applications with Xt. En-
glewood Cliffs NJ: Prentice Hall, 1989.

63. Young, Douglas. The X Window System: Programming and Applications with Xt
(OSF/Motif Edition). Englewood Cliffs NJ: Prentice Hall, 1990.

129

-- "Form ApprovedREPORT DOCUMENTATION PAGE 0MB No. 0704-0188

Publi repOrtig burden for 'h~s coltedlon of nformation is estimated to average I hou oet "esporse mduding the time for reviewng fnstructins searinge,i stirg ata ,ources,
jatheIng and maintaining the data needed. and completing and revewing the collection of information Send comments regarding this burden estimate oranv 3 ther aspect of this
collection of information. Inctuding suggestions for educing this burden to Washington HeaCquarters Services. Orectorate for nformation Operations rij Peo rts 1215 etlerson
Davis Highway. Suite 1204 Arington,%A 22202.4302 and to t Office of Management and Budget, Papereork Reduction Project (0704-0188). Washington C 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1991 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

AN ANIMATED GRAPHICAL POSTPROCESSOR
FOR THE SABER WARGAME

6. AUTHOR(S)

Gary W. Klabunde, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-6583 AFIT/GCS/ENG/91D-10

9.-SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AU CADRE/WG
Maxwell AFB, AL 36112

11 SUPPLEMENTARY NOTES

12a.DISTRIBUTION IAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13; ABSTRACT (Maximum 200 words)

One of the.most cost effective ways to learn and hone the skills necessary to conduct and win a war is through
the use of realistic computer simulations of conflict, or wargames. The Saber wargame was developed for just
this Purpose. Saber is a multi-sided, theater-level simulation developed by the Air Force Institute of Technology
for the Air Force Wargaming Center. It models conventional, nuclear, and chemical warfare between aggregated
air and ground forces. To aid in the realism, the effects of logistics, satellites, weather, and intelligence are
represented. Saber provides an avenue for senior level joint service officers to improve their airpower employment
decisioni-making skills. This thesis documents the object-oriented design and implementation of the graphical
post-processor for the Saber wargame. The user interface provides the game players with the force status
information necessary to plan and execute a theater-level air war. The interface includes a report processor that
produces reports for on screen viewing or printing. The system also provides animation capabilities to allow
the game players to see how the day's battle unfolded in an effort to enhance the learning process. The user
interface was written in the Ada programming language using the X Window System and OSF/Motif widget
set. Ada bindings developed by the Boeing Aerospace Corporation and the Science Applications International
Corporation (SAIC) were used to interface to the various X libraries. These bindings were supplemented with
bindings to a hexagon program written by the Air Force Wargaming Center.

14; SUBJECT TERMS 15. NUMBER OF PAGES

Wargames, Ada, X Windows, Man Computer, Weather 14316. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ASST1RACT

OF REPORT OF THIS PAGE OF ABSTRACT

-UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standarod :,rn 298 '2v, _9

